Local rings of embedding codepth at most 3 have only trivial semidualizing complexes

Saeed Nasseh¹ Sean Sather-Wagstaff²

¹University of Nebraska-Lincoln
²North Dakota State University

06 April 2014
Special Session on Commutative Algebra
AMS Western Section Meeting
University of New Mexico
arXiv:1401.0210
Assumption

(R, m, k) is a commutative noetherian local ring.

Definition (Foxby 1972, Grothendieck 1961)

(a) A finitely generated R-module C is **semidualizing** if $R \cong \text{Hom}_R(C, C)$ and $\text{Ext}^1_R(C, C) = 0$.

(b) A semidualizing module of finite inj. dimension is **dualizing**.

(c) $\mathcal{S}_0(R)$ is the set of isomorphism classes of SDMs.

Fact

(a) R is a **semidualizing** R-module.

(b) R is a dualizing R-module if and only if R is Gorenstein.

(c) R has a dualizing module if and only if it is Cohen-Macaulay and a homomorphic image of a Gorenstein ring.
Remark

Semidualizing modules are useful.
(a) Bass series of local ring homomorphisms.
(b) Composition of ring homomorphisms of finite G-dimension.
(c) Growth of Bass numbers of R.
(d) Structure of quasi-deformations.

Example

$R_1 = k[[X, Y]]/(X, Y)^2$ with dualizing module D_1.
$R_2 = k[[Z, W]]/(Z, W)^2$ with dualizing module D_2.

$$R = R_1 \otimes_k R_2 \cong \frac{k[[X, Y, Z, W]]}{(X, Y)^2 + (Z, W)^2}$$

SDMs: $R \otimes_k D_1 \otimes_k R_2 \otimes_k R_1 \otimes_k D_2 \otimes_k D_1 \otimes_k D_2$
Assume that R is artinian with $e = \operatorname{edim}(R)$.

(a) If $e \leq 1$, then R is CI, so the only SDM is R.
(b) If $e = 2$, then R is Golod, so the only SDMs are R and D.
(c) The previous example has $e = 4$ with four distinct SDMs.

Sketch of proof of (b).

Let C be a semidualizing R-module.

Gerko: $\operatorname{Hom}_R(C, D)$ is SDM and Tor-independent with C.

D. Jorgensen: $\operatorname{Hom}_R(C, D)$ or C has finite projective dimension.

Therefore, $C \cong D$ or $C \cong R$.

Question

What if $e = 3$?
Theorem (Nasseh-SW)

Assume that \(e = \text{edim}(R) - \text{depth}(R) \leq 3 \). Then \(R \) has at most two SDMs, namely \(R \) and a dualizing module if \(R \) has one.

Sketch of proof

The completion \(\hat{R} \) is a homomorphic image of a regular local ring \(Q \) with \(\text{edim}(Q) = \text{edim}(R) \).

\[
\begin{align*}
R \rightarrow \hat{R} \rightarrow K^{\hat{R}} \cong \hat{R} \otimes_Q K^Q \cong F \otimes_Q K^Q \cong F \otimes_Q k \\
\mathcal{S}_0(R) \hookrightarrow \mathcal{S}_0(\hat{R}) \hookrightarrow \mathcal{S}(K^{\hat{R}}) \twoheadrightarrow \mathcal{S}(F \otimes_Q k)
\end{align*}
\]

\(K^{\hat{R}} \) has the structure of a DG \(\hat{R} \)-algebra.

Auslander-Buchsbaum: The minimal free resolution \(F \) of \(\hat{R} \) over \(Q \) has length \(\leq 3 \).

Buchsbaum-Eisenbud: \(F \) is a DG \(Q \)-algebra.
Example (Koszul complex as DG algebra)

Let $x = x_1, \ldots, x_n \in R$, and set $K = K^R(x)$. The exterior algebra $\wedge R^n \cong \bigoplus_{i=0}^{n} K_i$ is a graded commutative R-algebra. With this multiplication, K satisfies the Leibniz rule:

$$\partial^K(ab) = \partial^K(a)b + (-1)^{|a|}a\partial^K(b).$$

Definition

A DG R-algebra is a non-negatively graded R-complex A such that $A^{\oplus} = \bigoplus_i A_i$ is a graded commutative R-algebra and with this multiplication A satisfies the Leibniz rule.

A DG A-module is an R-complex M such that $\bigoplus_i M_i$ is a graded A^{\oplus}-module and M satisfies the Leibniz rule.

Example

R is a DG R-algebra. DG R-modules are just R-complexes.
Definition (Christensen-SW 2009)

Let A be a DG R-algebraal A homologically finite DG A-module C is **semidualizing** if $A \cong \mathbb{R}\text{Hom}_A(C, C)$.

Example

"Semidualizing DG R-module" = "semidualizing R-complex".

Theorem (Nasseh-SW)

Let B be a finite-dimensional DG k-algebra, and let $W \neq 0$ be a positively graded finite dimensional k-vector space. Consider the trivial extension $A = B \ltimes W$. Given two homologically finite DG A-modules M and N, if $\text{Tor}_0^A(M, N) = 0$, then either M or N has finite projective dimension over A.
\[|\mathcal{S}(F \otimes_Q k)| \leq 2. \]

Set \(A = F \otimes_Q k \).

If \(R \) is Gorenstein, then so is \(A \), hence \(|\mathcal{S}(A)| = 1 \).

If \(A \cong B \ltimes W \) for a positively graded vector space \(W \neq 0 \), argue as in the Golod case to conclude that \(|\mathcal{S}(A)| \leq 2 \).

Weyman and Avramov-Kustin-Miller: the only case that remains is when there is a positively graded finite dimensional \(k \)-vector space \(V \neq 0 \) such that

\[
A \cong (k \ltimes V) \otimes_k (k \ltimes \Sigma k) \cong (k \ltimes V) \otimes_k K_k(0) \cong K^{k \ltimes V}(0).
\]

\[
|\mathcal{S}(A)| = |\mathcal{S}(K^{k \ltimes V}(0))| = |\mathcal{S}(k \ltimes V)| \leq 2.
\]

By a DG version of Auslander-Ding-Solberg’s lifting theorem.

By the previous theorem.