Semidualizing Modules for Rings of Codimension Two

Susan M. Cooper Sean Sather-Wagstaff

¹University or Nebraska-Lincoln
²North Dakota State University

16 October 2009
AMS Central Section Meeting
Baylor University
Assumption. (R, m, k) is a local Cohen-Macaulay ring with a dualizing module D.
Assumption. (R, m, k) is a local Cohen-Macaulay ring with a dualizing module D.

Definition. (Foxby, Golod, Vasconcelos, Wakamatsu)
A finitely generated R-module C is **semidualizing** if

1. the natural map $\chi^R_C: R \to \text{Hom}_R(C, C)$ is bijective; and
2. $\text{Ext}^i_R(C, C) = 0$ for all $i \geq 1$.

An R-module D is **dualizing** if it is semidualizing and $\text{id}(D) < \infty$.

Susan M. Cooper, Sean Sather-Wagstaff

Semidualizing Modules for Rings of Codimension Two
Assumption. \((R, m, k)\) is a local Cohen-Macaulay ring with a dualizing module \(D\).

Definition. (Foxby, Golod, Vasconcelos, Wakamatsu) A finitely generated \(R\)-module \(C\) is **semidualizing** if

1. the natural map \(\chi^R_C : R \to \text{Hom}_R(C, C)\) is bijective; and
2. \(\text{Ext}^i_R(C, C) = 0\) for all \(i \geq 1\).

An \(R\)-module \(D\) is **dualizing** if it is semidualizing and \(\text{id}(D) < \infty\).

Fact. The following conditions are equivalent:

1. \(R\) is Gorenstein;
2. \(D \cong R\);
3. \(\beta_i^R(D) = 0\) for some (equivalently, all) \(i \geq 1\); and
Assumption. \((R, m, k)\) is a local Cohen-Macaulay ring with a dualizing module \(D\).

Definition. (Foxby, Golod, Vasconcelos, Wakamatsu)
A finitely generated \(R\)-module \(C\) is semidualizing if

(1) the natural map \(\chi^R_C : R \to \text{Hom}_R(C, C)\) is bijective; and
(2) \(\text{Ext}^i_R(C, C) = 0\) for all \(i \geq 1\).

An \(R\)-module \(D\) is dualizing if it is semidualizing and \(\text{id}(D) < \infty\).

Fact. The following conditions are equivalent:

(i) \(R\) is Gorenstein;
(ii) \(D \cong R\);
(iii) \(\beta^R_i(D) = 0\) for some (equivalently, all) \(i \geq 1\); and
(iv) \(R\) has a unique semidualizing module.
Question. (Huneke) If the sequence \(\{ \beta^R_i(D) \}_i \) is bounded, must \(R \) be Gorenstein?

Theorem. (SSW, 2008) If \(C \) is a semidualizing \(R \)-module such that \(D \not\sim = C \not\sim = R \), then the sequence \(\{ \beta^R_i(D) \}_i \) is unbounded.

Tools for proof.

(a) The following conditions are equivalent:

(i) \(C \sim = R \);

(ii) \(C \) is cyclic;

(iii) \(\text{pd}_R(C) < \infty \).

(b) \(C^\dagger = \text{Hom}_R(C, D) \) is semidualizing, and \(C^{\dagger\dagger} \sim = C \).

(c) \(C \sim = D \) if and only if \(\text{pd}_R(C^\dagger) < \infty \).

(d) \(D \sim = C \otimes_R C^\dagger \) and \(\text{Tor}_R^1(C, C^\dagger) = 0 \).

(e) \(\beta^R_i(D) = \sum_{j=0}^{\infty} \beta^R_j(C) \beta^R_{i-j}(C^\dagger) \).
Question. (Huneke) If the sequence \(\{ \beta^R_i(D) \}_i \) is bounded, must \(R \) be Gorenstein?

Theorem. (SSW, 2008) If \(C \) is a semidualizing \(R \)-module such that \(D \not\cong C \not\cong R \), then the sequence \(\{ \beta^R_i(D) \}_i \) is unbounded.
Question. (Huneke) If the sequence \(\{ \beta_i^R(D) \}_i \) is bounded, must \(R \) be Gorenstein?

Theorem. (SSW, 2008) If \(C \) is a semidualizing \(R \)-module such that \(D \not\cong C \not\cong R \), then the sequence \(\{ \beta_i^R(D) \}_i \) is unbounded.

Tools for proof.
Question. (Huneke) If the sequence $\{\beta^R_i(D)\}_i$ is bounded, must R be Gorenstein?

Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\cong C \not\cong R$, then the sequence $\{\beta^R_i(D)\}_i$ is unbounded.

Tools for proof.

(a) The following conditions are equivalent:

(i) $C \cong R$; (ii) C is cyclic; (iii) $\text{pd}_R(C) < \infty$.
Question. (Huneke) If the sequence $\{\beta^R_i(D)\}_i$ is bounded, must R be Gorenstein?

Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\cong C \not\cong R$, then the sequence $\{\beta^R_i(D)\}_i$ is unbounded.

Tools for proof.

(a) The following conditions are equivalent:

(i) $C \cong R$;
(ii) C is cyclic;
(iii) $\text{pd}_R(C) < \infty$.

(b) $C^\dagger = \text{Hom}_R(C, D)$ is semidualizing, and $C^{\dagger\dagger} \cong C$.
Question. (Huneke) If the sequence \(\{ \beta^R_i(D) \}_{i} \) is bounded, must \(R \) be Gorenstein?

Theorem. (SSW, 2008) If \(C \) is a semidualizing \(R \)-module such that \(D \not\sim C \not\sim R \), then the sequence \(\{ \beta^R_i(D) \}_{i} \) is unbounded.

Tools for proof.

(a) The following conditions are equivalent:

(i) \(C \simeq R \); (ii) \(C \) is cyclic; (iii) \(\text{pd}_R(C) < \infty \).

(b) \(C^\dagger = \text{Hom}_R(C, D) \) is semidualizing, and \(C^{\dagger\dagger} \simeq C \).

(c) \(C \simeq D \) if and only if \(\text{pd}_R(C^\dagger) < \infty \).
Question. (Huneke) If the sequence $\{\beta_i^R(D)\}_i$ is bounded, must R be Gorenstein?

Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\sim C \not\sim R$, then the sequence $\{\beta_i^R(D)\}_i$ is unbounded.

Tools for proof.

(a) The following conditions are equivalent:

(i) $C \cong R$;
(ii) C is cyclic;
(iii) $\text{pd}_R(C) < \infty$.

(b) $C^\dagger = \text{Hom}_R(C, D)$ is semidualizing, and $C^{\dagger\dagger} \cong C$.

(c) $C \cong D$ if and only if $\text{pd}_R(C^\dagger) < \infty$.

(d) $D \cong C \otimes_R C^\dagger$ and $\text{Tor}_1^R(C, C^\dagger) = 0$.

Susan M. Cooper, Sean Sather-Wagstaff
Question. (Huneke) If the sequence \(\{\beta_i^R(D)\}_i \) is bounded, must \(R \) be Gorenstein?

Theorem. (SSW, 2008) If \(C \) is a semidualizing \(R \)-module such that \(D \not\cong C \not\cong R \), then the sequence \(\{\beta_i^R(D)\}_i \) is unbounded.

Tools for proof.

(a) The following conditions are equivalent:
(i) \(C \cong R \); (ii) \(C \) is cyclic; (iii) \(\text{pd}_R(C) < \infty \).

(b) \(C^\dagger = \text{Hom}_R(C, D) \) is semidualizing, and \(C^{\dagger\dagger} \cong C \).

(c) \(C \cong D \) if and only if \(\text{pd}_R(C^\dagger) < \infty \).

(d) \(D \cong C \otimes_R C^\dagger \) and \(\text{Tor}_{\geq 1}^R(C, C^\dagger) = 0 \).

(e) \(\beta_i^R(D) = \sum_{j=0}^{i} \beta_j^R(C) \beta_{i-j}^R(C^\dagger) \).
Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\cong C \not\cong R$, then the sequence $\{\beta^R_i(D)\}_i$ is unbounded.
Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\sim C \not\sim R$, then the sequence $\{ \beta_i^R(D) \}_i$ is unbounded.

Proof. Since $C \not\sim R$, we have $\beta_i^R(C) \geq 1$ for all $i \geq 0$.
Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\cong C \not\cong R$, then the sequence $\{\beta^R_i(D)\}_i$ is unbounded.

Proof. Since $C \not\cong R$, we have $\beta^R_i(C) \geq 1$ for all $i \geq 0$. Since $C \not\cong D$, we have $\beta^R_i(C^\dagger) \geq 1$ for all $i \geq 0$.
Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\simeq C \not\simeq R$, then the sequence $\{\beta_i^R(D)\}_i$ is unbounded.

Proof. Since $C \not\simeq R$, we have $\beta_i^R(C) \geq 1$ for all $i \geq 0$. Since $C \not\simeq D$, we have $\beta_i^R(C^\dagger) \geq 1$ for all $i \geq 0$.

It follows that $\beta_i^R(D) = \sum_{j=0}^{i} \beta_j^R(C)\beta_{i-j}^R(C^\dagger) \geq i + 1$. \qed
Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\cong C \not\cong R$, then the sequence $\{\beta_i^R(D)\}_i$ is unbounded.

Proof. Since $C \not\cong R$, we have $\beta_i^R(C) \geq 1$ for all $i \geq 0$.

Since $C \not\cong D$, we have $\beta_i^R(C^\perp) \geq 1$ for all $i \geq 0$.

It follows that $\beta_i^R(D) = \sum_{j=0}^{i} \beta_j^R(C)\beta_{i-j}^R(C^\perp) \geq i + 1$.

Strategy. Identify all R for which the only two semidualizing modules (up to isomorphism) are R and D. These are the only rings where Huneke’s question is still open.
Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\cong C \not\cong R$, then the sequence $\{\beta_i^R(D)\}_i$ is unbounded.

Proof. Since $C \not\cong R$, we have $\beta_i^R(C) \geq 1$ for all $i \geq 0$. Since $C \not\cong D$, we have $\beta_i^R(C^\dagger) \geq 1$ for all $i \geq 0$. It follows that $\beta_i^R(D) = \sum_{j=0}^{i} \beta_j^R(C)\beta_{i-j}^R(C^\dagger) \geq i + 1$.

Strategy. Identify all R for which the only two semidualizing modules (up to isomorphism) are R and D. These are the only rings where Huneke’s question is still open.

Goal. Given R, count the semidualizing R-modules and describe them explicitly.
Theorem. (SSW, 2008) If C is a semidualizing R-module such that $D \not\cong C \not\cong R$, then the sequence $\{\beta^R_i(D)\}_i$ is unbounded.

Proof. Since $C \not\cong R$, we have $\beta^R_i(C) \geq 1$ for all $i \geq 0$. Since $C \not\cong D$, we have $\beta^R_i(C^\dagger) \geq 1$ for all $i \geq 0$. It follows that $\beta^R_i(D) = \sum_{j=0}^{i} \beta^R_j(C) \beta^R_{i-j}(C^\dagger) \geq i + 1$.

Strategy. Identify all R for which the only two semidualizing modules (up to isomorphism) are R and D. These are the only rings where Huneke’s question is still open.

Goal. Given R, count the semidualizing R-modules and describe them explicitly.

Focus. Cohen-Macaulay local rings of codimension 2.
Note. If codim$(R) \leq 1$, then R is Gorenstein, so R has a single semidualizing module.
Note. If $\operatorname{codim}(R) \leq 1$, then R is Gorenstein, so R has a single semidualizing module.

Note. Ghione and Gulliksen show that the sequence $\{\beta_i^R(D)\}_i$ is unbounded when R is not Gorenstein and $\operatorname{codim}(R) = 2$. See also Christensen, Striuli, and Veliche.
Note. If \(\text{codim}(R) \leq 1 \), then \(R \) is Gorenstein, so \(R \) has a single semidualizing module.

Note. Ghione and Gulliksen show that the sequence \(\{ \beta_i^R(D) \} \) is unbounded when \(R \) is not Gorenstein and \(\text{codim}(R) = 2 \). See also Christensen, Striuli, and Veliche.

Questions. Let \(C \) be a semidualizing \(R \)-module.
Note. If codim$(R) \leq 1$, then R is Gorenstein, so R has a single semidualizing module.

Note. Ghione and Gulliksen show that the sequence $\{\beta^R_i(D)\}_i$ is unbounded when R is not Gorenstein and codim$(R) = 2$. See also Christensen, Striuli, and Veliche.

Questions. Let C be a semidualizing R-module.

1. Are there only finitely many isomorphism classes of semidualizing R-modules?
Note. If $\text{codim}(R) \leq 1$, then R is Gorenstein, so R has a single semidualizing module.

Note. Ghione and Gulliksen show that the sequence $\{\beta_i^R(D)\}_i$ is unbounded when R is not Gorenstein and $\text{codim}(R) = 2$. See also Christensen, Striuli, and Veliche.

Questions. Let C be a semidualizing R-module.

1. Are there only finitely many isomorphism classes of semidualizing R-modules?

2. Is the number of isomorphism classes of semidualizing R-modules equal to 2^n for some integer n?
Note. If codim$(R) \leq 1$, then R is Gorenstein, so R has a single semidualizing module.

Note. Ghione and Gulliksen show that the sequence $\{\beta^R_i(D)\}_i$ is unbounded when R is not Gorenstein and codim$(R) = 2$. See also Christensen, Striuli, and Veliche.

Questions. Let C be a semidualizing R-module.

1. Are there only finitely many isomorphism classes of semidualizing R-modules?

2. Is the number of isomorphism classes of semidualizing R-modules equal to 2^n for some integer n?

3. If I is an m-primary ideal, then $e(I; C) = e(I; R)$?
Note. If codim$(R) \leq 1$, then R is Gorenstein, so R has a single semidualizing module.

Note. Ghione and Gulliksen show that the sequence $\{\beta_i^R(D)\}_i$ is unbounded when R is not Gorenstein and codim$(R) = 2$.
See also Christensen, Striuli, and Veliche.

Questions. Let C be a semidualizing R-module.

1. Are there only finitely many isomorphism classes of semidualizing R-modules?

2. Is the number of isomorphism classes of semidualizing R-modules equal to 2^n for some integer n?

3. If I is an m-primary ideal, then $e(I; C) = e(I; R)$?

4. If $P \in \text{Ass}(R)$, then $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$?
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Let C be a semidualizing R-module such that $\beta^R_0(C) \leq \beta^R_1(C)$. Then C is dualizing for R.

Proof. Jorgensen and Leuschke show that $\beta^R_1(D) = \beta^R_0(D) + 1$. Suppose that C is not dualizing. The assumption $\beta^R_0(C) \leq \beta^R_1(C)$ implies that $C \not\simeq R$. Thus $\beta^R_0(D) + 1 = \beta^R_1(D) = \beta^R_1(C) \beta^R_0(C^\ast) + \beta^R_0(C) \geq \beta^R_0(D) + 2$. This is an egregious contradiction.
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Let C be a semidualizing R-module such that $\beta^R_0(C) \leq \beta^R_1(C)$. Then C is dualizing for R.

Proof. Jorgensen and Leuschke show that $\beta^R_1(D) = \beta^R_0(D) + 1$.
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Let C be a semidualizing R-module such that $\beta_0^R(C) \leq \beta_1^R(C)$. Then C is dualizing for R.

Proof. Jorgensen and Leuschke show that $\beta_1^R(D) = \beta_0^R(D) + 1$. Suppose that C is not dualizing.
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Let C be a semidualizing R-module such that $\beta^R_0(C) \leq \beta^R_1(C)$. Then C is dualizing for R.

Proof. Jorgensen and Leuschke show that $\beta^R_1(D) = \beta^R_0(D) + 1$.
Suppose that C is not dualizing.
The assumption $\beta^R_0(C) \leq \beta^R_1(C)$ implies that $C \not\cong R$.
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Let C be a semidualizing R-module such that $\beta^R_0(C) \leq \beta^R_1(C)$. Then C is dualizing for R.

Proof. Jorgensen and Leuschke show that $\beta^R_1(D) = \beta^R_0(D) + 1$. Suppose that C is not dualizing. The assumption $\beta^R_0(C) \leq \beta^R_1(C)$ implies that $C \not\cong R$. Thus

$$\beta^R_0(D) + 1 = \beta^R_1(D)$$

$$= \beta^R_1(C) \beta^R_0(C^\dagger) + \beta^R_0(C) \beta^R_1(C^\dagger)$$

$$\geq \beta^R_0(C) \beta^R_0(C^\dagger) + (2)(1)$$

$$\geq \beta^R_0(D) + 2.$$
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Let C be a semidualizing R-module such that $\beta^R_0(C) \leq \beta^R_1(C)$. Then C is dualizing for R.

Proof. Jorgensen and Leuschke show that $\beta^R_1(D) = \beta^R_0(D) + 1$. Suppose that C is not dualizing. The assumption $\beta^R_0(C) \leq \beta^R_1(C)$ implies that $C \not\cong R$. Thus

$$\beta^R_0(D) + 1 = \beta^R_1(D)$$

$$= \beta^R_1(C)\beta^R_0(C^\perp) + \beta^R_0(C)\beta^R_1(C^\perp)$$

$$\geq \beta^R_0(C)\beta^R_0(C^\perp) + (2)(1)$$

$$\geq \beta^R_0(D) + 2.$$

This is an egregious contradiction.
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Let C be an R-module with $\text{pd}_R(C) = \infty$. Assume that for every $P \in \text{Ass}(R)$ one has $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$. Then $\beta_0^R(C) \leq \beta_1^R(C)$.
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Let C be an R-module with $\text{pd}_R(C) = \infty$. Assume that for every $P \in \text{Ass}(R)$ one has $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$. Then $\beta_0^R(C) \leq \beta_1^R(C)$.

Proof. Count lengths in an exact sequence

$$0 \rightarrow L \rightarrow R^{\beta_1^R(C)} \rightarrow R^{\beta_0^R(C)} \rightarrow C \rightarrow 0$$

to conclude that $\beta_0^R(C) - 1 \leq \beta_1^R(C)$.

Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Let C be an R-module with $\text{pd}_R(C) = \infty$. Assume that for every $P \in \text{Ass}(R)$ one has $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$. Then $\beta_0^R(C) \leq \beta_1^R(C)$.

Proof. Count lengths in an exact sequence

$$0 \rightarrow L \rightarrow R^{\beta_1^R(C)} \rightarrow R^{\beta_0^R(C)} \rightarrow C \rightarrow 0$$

to conclude that $\beta_0^R(C) - 1 \leq \beta_1^R(C)$.

Suppose that $\beta_0^R(C) > \beta_1^R(C)$; then $\beta_0^R(C) - 1 = \beta_1^R(C)$.
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Let C be an R-module with $\text{pd}_R(C) = \infty$. Assume that for every $P \in \text{Ass}(R)$ one has $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$. Then $\beta_0^R(C) \leq \beta_1^R(C)$.

Proof. Count lengths in an exact sequence

$$0 \to L \to R^{\beta_1^R(C)} \to R^{\beta_0^R(C)} \to C \to 0$$

to conclude that $\beta_0^R(C) - 1 \leq \beta_1^R(C)$.

Suppose that $\beta_0^R(C) > \beta_1^R(C)$; then $\beta_0^R(C) - 1 = \beta_1^R(C)$.

Consider a second exact sequence $0 \to K \to R^{\beta_0^R(C)} \to C \to 0$.

Another length-count shows that $\beta_0^R(K) = \text{rank}_R(K)$.
Lemma. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Let C be an R-module with $\text{pd}_R(C) = \infty$. Assume that for every $P \in \text{Ass}(R)$ one has $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$. Then $\beta_0^R(C) \leq \beta_1^R(C)$.

Proof. Count lengths in an exact sequence

$$0 \rightarrow L \rightarrow R^{\beta_1^R(C)} \rightarrow R^{\beta_0^R(C)} \rightarrow C \rightarrow 0$$

to conclude that $\beta_0^R(C) - 1 \leq \beta_1^R(C)$.

Suppose that $\beta_0^R(C) > \beta_1^R(C)$; then $\beta_0^R(C) - 1 = \beta_1^R(C)$.

Consider a second exact sequence $0 \rightarrow K \rightarrow R^{\beta_0^R(C)} \rightarrow C \rightarrow 0$.

Another length-count shows that $\beta_0^R(K) = \text{rank}_R(K)$.

Thus, K is free, contradicting the assumption $\text{pd}_R(C) = \infty$. \qed
Proposition. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2 where $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$ for each $P \in \text{Ass}(R)$ and each semidualizing R-module C. The only two semidualizing R-modules (up to isomorphism) are R and D.

Proof. Combine the previous two lemmas.
Proposition. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2 where $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$ for each $P \in \text{Ass}(R)$ and each semidualizing R-module C. The only two semidualizing R-modules (up to isomorphism) are R and D.

Proof. Combine the previous two lemmas.

Question. If R is a Cohen-Macaulay local ring of codimension 2, are the only two semidualizing modules (up to isomorphism) R and D?
Special Cases

Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \sim = S/I$ where $S = k[[X_0, X_1, X_2]]$ and $I \subset k[[X_0, X_1, X_2]]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^2_k; or
4. $\hat{R} \sim = k[[X_1, \ldots, X_n]]/I$ where I is a monomial ideal.

The only two semidualizing R-modules (up to isomorphism) are R and D.

Proof. In each case, prove that length$_R(C_P) = \text{length}_R(R_P)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C. This is straightforward in cases (1) and (2). It requires more work in cases (3) and (4).
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

(1) R is generically Gorenstein, e.g., R is reduced;

(2) $P^2 R_{P} = 0$ for each $P \in \text{Ass}(R)$;

(3) $\hat{R} \cong S/I S$ where $S = k[\[X_0, X_1, X_2\]]$ and $I \subset k[\[X_0, X_1, X_2\]]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^2_k; or

(4) $\hat{R} \cong k[\[X_1, \ldots, X_n\]]/I$ where I is a monomial ideal.

The only two semidualizing R-modules (up to isomorphism) are R and D. Proof. In each case, prove that length $R_{P}(C_{P}) = \text{length } R_{P}(R_{P})$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C. This is straightforward in cases (1) and (2). It requires more work in cases (3) and (4).
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

(1) R is generically Gorenstein, e.g., R is reduced;

(2) $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \cong S/IS$ where $S = k[[X_0, X_1, X_2]]$ and $I \subseteq k[X_0, X_1, X_2]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}_k^2; or

The only two semidualizing R-modules (up to isomorphism) are R and D.

Proof. In each case, prove that $\text{length } R_P(C_P) = \text{length } R_P(R_P)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C. This is straightforward in cases (1) and (2). It requires more work in cases (3) and (4).
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \cong S/IS$ where $S = k[[X_0, X_1, X_2]]$ and $I \subset k[X_0, X_1, X_2]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^2_k; or
4. $\hat{R} \cong k[[X_1, \ldots, X_n]]/I$ where I is a monomial ideal.
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

(1) R is generically Gorenstein, e.g., R is reduced;

(2) $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;

(3) $\hat{R} \cong S/IS$ where $S = k[\![X_0, X_1, X_2]\!]$ and $I \subset k[\![X_0, X_1, X_2]\!]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^2_k; or

(4) $\hat{R} \cong k[\![X_1, \ldots, X_n]\!]/I$ where I is a monomial ideal.

The only two semidualizing R-modules (up to isomorphism) are R and D.
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \cong S/IS$ where $S = k[[X_0, X_1, X_2]]$ and $I \subset k[X_0, X_1, X_2]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}_k^2; or
4. $\hat{R} \cong k[[X_1, \ldots, X_n]]/I$ where I is a monomial ideal.

The only two semidualizing R-modules (up to isomorphism) are R and D.

Proof. In each case, prove that $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C.
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\widehat{R} \cong S / IS$ where $S = k[[X_0, X_1, X_2]]$ and $I \subset k[X_0, X_1, X_2]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^2_k; or
4. $\widehat{R} \cong k[[X_1, \ldots, X_n]] / I$ where I is a monomial ideal.

The only two semidualizing R-modules (up to isomorphism) are R and D.

Proof. In each case, prove that $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C.

This is straightforward in cases (1) and (2).
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring of codimension 2. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \cong S/IS$ where $S = k[X_0, X_1, X_2]$ and $I \subset k[X_0, X_1, X_2]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^2_k; or
4. $\hat{R} \cong k[X_1, \ldots, X_n]/I$ where I is a monomial ideal.

The only two semidualizing R-modules (up to isomorphism) are R and D.

Proof. In each case, prove that $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C.

This is straightforward in cases (1) and (2).

It requires more work in cases (3) and (4).
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P_2 R = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \sim S/I$ where $S = k[[X_0,\ldots,X_n]]$ and $I \subset k[[X_0,\ldots,X_n]]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^n_k; or
4. $\hat{R} \sim k[[X_1,\ldots,X_n]]/I$ where I is a monomial ideal.

Then $e(I;C_P) = e(I;R_P)$ for each m-primary ideal I.

Proof. In cases (1)–(3), show that $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C. In case (4), use polarization to deform to the reduced case.
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Assume that one of the following holds:

(1) R is generically Gorenstein, e.g., R is reduced;

(2) $P_2 R_2 = 0$ for each $P \in \text{Ass}(R)$;

(3) $\hat{R} \sim = S/IS$ where $S = k[[X_0, \ldots, X_n]]$ and $I \subset k[[X_0, \ldots, X_n]]$ is the ideal of vanishing for a fat point scheme in P_n; or

(4) $\hat{R} \sim = k[[X_1, \ldots, X_n]]/I$ where I is a monomial ideal.

Then $e(I; C) = e(I; R)$ for each m-primary ideal I.

Proof. In cases (1)–(3), show that $\text{length} R_2 (C_2) = \text{length} R_2 (R_2)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C. In case (4), use polarization to deform to the reduced case.
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Assume that one of the following holds:

(1) R is generically Gorenstein, e.g., R is reduced;

(2) $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;

(3) $\hat{R} \sim S/I S$ where $S = k[[X_0, \ldots, X_n]]$ and $I \subset k[[X_0, \ldots, X_n]]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^n_k; or

(4) $\hat{R} \sim k[[X_1, \ldots, X_n]]/I$ where I is a monomial ideal.

Then $e(I; C_R) = e(I; R)$ for each m-primary ideal I.

Proof. In cases (1)–(3), show that length $R_P(C_R) =$ length $R_P(R)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C_R. In case (4), use polarization to deform to the reduced case.
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \cong S/IS$ where $S = k[X_0, \ldots, X_n]$ and $I \subset k[X_0, \ldots, X_n]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^n_k; or
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\widehat{R} \cong S/IS$ where $S = k[X_0, \ldots, X_n]$ and $I \subset k[X_0, \ldots, X_n]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}_k^n; or
4. $\widehat{R} \cong k[X_1, \ldots, X_n]/I$ where I is a monomial ideal.
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \cong S/IS$ where $S = k[X_0, \ldots, X_n]$ and $I \subset k[X_0, \ldots, X_n]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^n_k; or
4. $\hat{R} \cong k[X_1, \ldots, X_n]/I$ where I is a monomial ideal.

Then $e(I; C) = e(I; R)$ for each m-primary ideal I.
Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Assume that one of the following holds:

(1) R is generically Gorenstein, e.g., R is reduced;

(2) $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;

(3) $\hat{R} \cong S/IS$ where $S = k[X_0, \ldots, X_n]$ and $I \subset k[X_0, \ldots, X_n]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}_k^n; or

(4) $\hat{R} \cong k[X_1, \ldots, X_n]/I$ where I is a monomial ideal.

Then $e(I; C) = e(I; R)$ for each m-primary ideal I.

Proof. In cases (1)–(3), show that $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C.

Theorem. (SMC-SSW, 2009) Let R be a Cohen-Macaulay local ring. Assume that one of the following holds:

1. R is generically Gorenstein, e.g., R is reduced;
2. $P^2 R_P = 0$ for each $P \in \text{Ass}(R)$;
3. $\hat{R} \cong S/IS$ where $S = k[[X_0, \ldots, X_n]]$ and $I \subset k[X_0, \ldots, X_n]$ is the ideal of vanishing for a fat point scheme in \mathbb{P}^n_k; or
4. $\hat{R} \cong k[[X_1, \ldots, X_n]]/I$ where I is a monomial ideal.

Then $e(I; C) = e(I; R)$ for each m-primary ideal I.

Proof. In cases (1)–(3), show that $\text{length}_{R_P}(C_P) = \text{length}_{R_P}(R_P)$ for every $P \in \text{Ass}(R)$ and every semidualizing R-module C.

In case (4), use polarization to deform to the reduced case. \qed