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Validation is a critical component of any commercial design cycle. Testing-based
approaches have AQ1been predominantly what has been used to ensure design cor-
rectness. Formal verification is an alternate approach to design validation, where
correctness is established using mathematical proofs. Since a proof can correspond
to a very large number of test cases, formal verification has been found to be
extremely useful in establishing design correctness and finding corner-case errors
that often escape traditional testing. Since the now infamous FDIV AQ2bug (i.e., bug
found in the floating-point unit of the Intel Pentium processor in 1994 after ship-
ping, which cost Intel $500 million to correct), the semiconductor industry has
aggressively incorporated formal verification into its design cycle for validation.

One of the more popular formal verification approaches that have been found to
be extremely scalable and useful in semiconductor design is equivalence checking.
Typically, a lot of time, money, and effort are invested into ensuring the correctness
of a design. However, the design itself is never static, as it is continuously tinkered
with and optimized. Equivalence checking technology can, with a high degree of
automation and efficiency, check that the golden model (i.e., the design that has
been extensively validated) and its derivate are functionally equivalent. Scalability
is harnessed by exploiting the structural similarity of the golden model and its
derivate. Examples of commercial equivalence checkers include IBM Sixth Sense,
Jasper Gold Sequential Equivalence Checker, Calypto SLEC, Mishchenko
EBCCS13, and Cadence Encounter Conformal Equivalence Checker.

In this chapter, we describe an equivalence checking methodology for NCL AQ3
circuits. Note that currently, there are no commercial equivalence checkers for QDI
circuits. For commercial applications, NCL circuits, and QDI circuits in general,
are often synthesized from synchronous intellectual property designs. The resulting
NCL design may then be further optimized and tinkered with. Therefore, we have
designed an equivalence checker that can be used in two ways: (1) to verify the
functional equivalence of two NCL designs and (2) to verify the equivalence
between an NCL design and a synchronous design.
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15.1 Overview of approach

Vidura et al. [1] have previously developed an approach for verifying the equiva-
lence of an NCL circuit against a synchronous circuit. They use the theory of Well-
Founded Equivalence Bisimulation (WEB) refinement [2] as the notion of
equivalence. In WEB refinement, both the circuit to be verified (here the NCL
circuit) and the specification circuit (here the synchronous circuit) are modeled as
transition systems (TSs), which capture the behavior of the circuit as a set of states
and transitions between the states. WEB refinement essentially defines what it
means for two TSs to be functionally equivalent. Their approach performs sym-
bolic simulation on both the NCL circuit and the synchronous circuit to generate
the TSs corresponding to both circuits. A decision procedure is then used to verify
that the two TSs satisfy the WEB refinement property.

In working with the above approach, we found that because NCL circuits
exhibit highly nondeterministic behaviors, the corresponding TSs are very complex,
even for relatively simple circuits. This complexity leads to two issues. First is state
space explosion. Second, it becomes very difficult to compute the reachable states of
the resulting TS. Computing reachable states is important because unreachable
states often flag numerous spurious counterexamples, which makes verification
intractable.

We have therefore developed an alternate approach to circumvent having to
deal with the NCL TS. The high-level idea is to perform structural transformation
on the NCL circuit netlist to convert the NCL circuit into an equivalent synchro-
nous circuit. The converted synchronous circuit is then compared against the spe-
cification synchronous circuit, using WEB refinement as the notion of correctness.
The converted synchronous circuit, specification synchronous circuit, and the WEB
refinement property are then automatically encoded in the Satisfiability Modulo
Theory Library (SMT-LIB) language [3]. The resulting equivalence property is then
checked using an SMT solver. Additional checks need to be performed to ensure
that the NCL circuit is live (i.e., deadlock free). Thus, the overall verification has
three high-level steps: (1) conversion from NCL to synchronous; (2) verification
of converted synchronous against specification synchronous; and (3) additional
checks on original NCL circuit to ensure liveness. The methodology can also be
used to check the equivalence of two NCL circuits by applying the conversion
technique to both NCL circuits to obtain two corresponding synchronous circuits,
verifying these two synchronous circuits against each other, and performing the
additional liveness checks on both NCL circuits.

15.2 Related verification works for asynchronous
paradigms

Several formal verification techniques have been implemented to verify the two
major asynchronous design paradigms: bounded-delay and QDI. The bounded-
delay model is based on the assumption that the delay in all circuit components and
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wires is bounded—i.e., worse case delay can be calculated. Because of these timing
constraints, most of the verification schemes for timed asynchronous models involve
trace theory, Signal Transition Graph [4], and timed Petri nets. Reference [5] illus-
trates a gate-level verification method based on trace theory where the circuit, as
well as the correctness properties, is modeled as Petri nets. An approach based on
time-driven unfolding of Petri nets is used to verify freedom from hazards in
asynchronous circuits consisting of logic gates and micropipelines [6]. However,
timed-model-based verification methods are not applicable to QDI circuits, which
are based on exactly the opposite assumption that circuit delays are unbounded and
therefore indeterminate.

There exist several verification schemes specific to QDI circuits as well.
Verbeek and Schmaltz [7] illustrate a deadlock-verification scheme for QDI cir-
cuits based on the Click Library [8]. Circuits based on this primitive library are
structurally different from other QDI paradigms, such as NCL. Moreover, this
method does not verify the functional correctness (safety) of the circuit.
Refinement-based formal methods have been successful in verifying both bounded-
delay and QDI asynchronous models. Desynchronized circuits, which are based on
a bounded-delay structure, can be verified by a refinement-based approach, as
discussed in [9]. As mentioned in the previous section, reference [1] presents a
method to check the functional equivalence of NCL circuits against their syn-
chronous counterparts using WEB refinement; and a model-checking-based
method that checks for safety and liveness of PCHB AQ5circuits is presented in [10].
However, both of these techniques suffer from state space explosion, since they
model the QDI circuits as TSs, which become very complex for large circuits due
to the nondeterministic behavior of QDI paradigms. Using a conversion technique
along with WEB refinement, similar to that presented herein but applied to PCHB
circuits, we were able to verify equivalence of combinational PCHB circuits with
their Boolean specification, which proves to be highly scalable and much faster
than previous techniques [11]. That method is currently being extended to sequential
PCHB circuits.

Along with safety and liveness, input-completeness and observability are two
critical properties of NCL circuits, which must be verified in order to ensure delay
insensitivity, since a circuit may function correctly under normal operating condi-
tions while not being input-complete or observable, but may then malfunction
under extreme timing scenarios, such as those caused by process, voltage, or tem-
perature variations. A manual approach to checking input-completeness is outlined
in [12], which requires an analysis of each output term. For example, in order for
output Z to be input-complete with respect to input A, every product term in all rails
of Z (in SOP AQ6format) must contain any rail of A. This ensures that Z cannot be
DATA until A is DATA; and if Z is constructed solely out of NCL gates with
hysteresis, the gate hysteresis ensures that Z cannot transition from DATA to
NULL until A transitions from DATA to NULL. Hence, Z is input-complete with
respect to A. However, this method cannot ensure input-completeness of relaxed
NCL circuits [13], where not all gates contain hysteresis. Also, scalability is a
problem with this approach, as the number of product terms that need to be verified
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grows exponentially as the number of inputs increase. Kondratyev et al. [14] pro-
vide a formal verification approach for observability verification, which entails
determining all input combinations that assert gatei, then forcing gatei to remain
de-asserted while checking that none of those input combinations result in all cir-
cuit outputs becoming DATA. This check is performed for all gates to ensure
circuit observability; and if also applied to each circuit input (i.e., replace gatei with
inputi in the observability check explanation), it will guarantee input-completeness.
Our approach for observability checking, detailed in Section 15.3.5, is very similar
to [14], while our approach checks input-completeness for all inputs simultaneously,
as detailed in Section 15.3.4.

15.3 Equivalence verification for combinational
NCL circuits

In industry, asynchronous NCL circuits are typically synthesized from their syn-
chronous counterparts. Throughout the synthesis and optimization process, the
synchronous specification undergoes several transformations, resulting in major
structural differences between the implemented NCL circuit and its synchronous
specification. For this kind of scenario, equivalence checking is a widely used for-
mal verification method that checks for logical and functional equivalence between
two different circuits.

NCL verification based on equivalence checking has proved to be a unified,
fast, and scalable approach that eliminates most of the limiting factors of previous
verification works in the field. The NCL equivalence verification method requires
five steps, as described below and detailed in the following subsections AQ7:

Step 1: The netlist of an NCL circuit to be verified is converted into a corre-
sponding Boolean/synchronous netlist, which is modeled in the SMT-LIB
language using an automated script that we developed. The converted netlist
is then checked against its corresponding Boolean/synchronous specification
using an SMT solver to test for functional equivalence, as detailed in
Section 15.3.1.

Step 2: Step 1 only checks the converted circuit’s signals corresponding
to the original NCL circuit’s rail1 signals, with their equivalent Boolean/
synchronous specification external outputs or register outputs; hence, the
original NCL circuit’s rail0 signals must also be ensured to be inverses of
their respective rail1 signals, through the invariant check detailed in
Section 15.3.2, in order to guarantee safety after passing Step 1.

Step 3: The NCL netlist is then automatically converted into a graph structure,
and information related to the handshaking control is gathered by traversing
the graph. This information is utilized to analyze the handshaking correctness
of the circuit in order to check for deadlock, as detailed in Section 15.3.3.

310 Asynchronous circuit applications

JiaDi-6990448 23 August 2019; 16:0:9



Steps 4 and 5: Once the NCL circuit passes Step 2, each combinational logic
(C/L) block must be verified to be both input-complete (Step 4) and obser-
vable (Step 5) in order to guarantee liveness of the circuit under all timing
scenarios, as detailed in Sections 15.3.4 and 15.3.5, respectively.

15.3.1 Functional equivalence check
A 3 � 3 NCL multiplier, shown in Figure 15.1(a), is used as an example to illustrate
the equivalence verification procedure for combinational NCL circuits. NCL mul-
tipliers use input-incomplete NCL AND functions (denoted with an I inside the
AND symbol), input-complete NCL AND functions (denoted with a C inside the
AND symbol), NCL Half-Adders (HA), and NCL Full-Adders (FA), which all
consist of a combination of NCL threshold gates, as shown in Figure 15.1(b), (c),
(d), and (e), respectively. All signals in Figure 15.1(a) are dual-rail; and all registers
are reset-to-NULL, denoted as REG_NULL. In addition to the I/O registers, the
multiplier in Figure 15.1(a) includes one intermediate register stage to increase
throughput.

The netlist of the NCL 3 � 3 multiplier is shown in Figure 15.2(a). The first
two lines indicate all primary inputs and primary outputs, respectively. Lines 3–44
correspond to the NCL C/L threshold gates, where the first column is the type of
gate, the second column lists the gate’s inputs, in comma separated format starting
with input A, and the last column is the gate’s output. Lines 45–64 correspond to
1-bit NCL registers, where the first column is the reset type of the register (i.e.,
_NULL, _DATA0, or _DATA1, for reset to NULL, DATA0, or DATA1, respec-
tively), the second column denotes the register’s level (i.e., the depth of the path
through registers without considering the C/L in-between. For the 3 � 3 multiplier
example, there are three stages of registers, with levels 1, 2, and 3, starting from the
input registers), the third and fourth columns are the register’s rail0 and rail1 data
inputs, respectively, the fifth and sixth columns are the register’s Ki input and Ko
output, respectively, and the seventh and eighth columns are the register’s rail0 and
rail1 data outputs, respectively. Lines 65–72 correspond to the C-elements (i.e.,
THnn gates) used in the handshaking control circuitry, where the first column is
Cn, with n indicating the number of inputs to the C-element, the second column
lists the inputs in comma separated format, and the last column is the C-element’s
output. For example, C4 on line 65 is a four-input C-element.

The NCL netlist is input to a conversion algorithm that converts it into an
equivalent Boolean netlist, as shown in Figure 15.2(b) for the Figure 15.2(a)
example. Each NCL C/L gate is replaced with its corresponding Boolean gate that
has the same set function, but no hysteresis; each internal dual-rail signal is already
represented as two Boolean signals, the first for rail1 and the second for rail0, so no
changes are needed for these; and each primary dual-rail input is replaced with that
signal’s rail1, as this corresponds to the equivalent Boolean signal. The rail1 pri-
mary inputs are then inverted to produce internal signals corresponding to what
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Figure 15.1 (a) 3 � 3 NCL multiplier AQ8circuit. (b) Input-incomplete NCL AND.
(c) Input-complete NCL AND. (d) NCL HA. (e) NCL FA
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(a) (b)

1.    xi0_0,xi0_1,xi1_0,xi1_1,…,yi1_0,yi1_1,yi2_0,yi2_1
2.    p0_0,p0_1,p1_0,p1_1,…,p5_0,p5_1
3.    th22 x0_1,y0_1  m0_1
4.    thand0 y0_0,x0_0,y0_1,x0_1  m0_0
5.    th22   x0_1,y1_1  t0_1
6.    th12   x0_0,y1_0  t0_0
7.    th22   x0_1,y2_1  t4_1
8.    th12   x0_0,y2_0  t4_0
9.    th22   x1_1,y0_1  t1_1
10.  th12   x1_0,y0_0  t1_0
11.  th22   x1_1,y1_1  t2_1
12.  thand0   y1_0,x1_0,y1_1,x1_1  t2_0
13.  th22   x1_1,y2_1  t6_1
14.  th12   x1_0,y2_0  t6_0
15.  th22   x2_1,y0_1  t3_1
16.  th12   x2_0,y0_0  t3_0
17.  th22   x2_1,y1_1  t5_1
18.  th12   x2_0,y1_0  t5_0
19.  th22   x2_1,y2_1  t7_1
20.  thand0   y2_0,x2_0,y2_1,x2_1  t7_0
21.  th24comp   t0_0,t1_0,t0_1,t1_1  m1_1
22.  th24comp   t0_0,t1_1,t1_0,t0_1  m1_0
23.  th22   t0_1,t1_1  c1_1
24.  th12   t0_0,t1_0  c1_0
25.  th23   t3_0,t2_0,c1_0  c2_0
26.  th23   t3_1,t2_1,c1_1  c2_1
27.  th34w2    c2_0,t3_1,t2_1,c1_1   s1_1
28.  th34w2    c2_1,t3_0,t2_0,c1_0   s1_0
29.  th24comp    s1_0,t4_0,s1_1,t4_1   m2_1
30.  th24comp    s1_0,t4_1,t4_0,s1_1   m2_0
31.  th22    s1_1,t4_1   c3_1
32.  th12    s1_0,t4_0   c3_0
33.  th23    m5_0,m4_0,m3_0   c4_0
34.  th23    m5_1,m4_1,m3_1   c4_1
35.  th34w2    c4_0,m5_1,m4_1,m3_1   s2_1
36.  th34w2    c4_1,m5_0,m4_0,m3_0   s2_0
37.  th24comp    s2_0,m6_0,s2_1,m6_1   z3_1
38.  th24comp    s2_0,m6_1,m6_0,s2_1   z3_0
39.  th22    s2_1,m6_1   c5_1
40.  th12    s2_0,m6_0   c5_0
41.  th23    m7_0,c4_0,c5_0   z5_0
42.  th23    m7_1,c4_1,c5_1   z5_1
43.  th34w2    z5_0,m7_1,c4_1,c5_1  z4_1
44.  th34w2    z5_1,m7_0,c4_0,c5_0  z4_0
45.  Reg_NULL   1   xi0_0 xi0_1   KO3   ko1   x0_0 x0_1
46.  Reg_NULL   1   xi1_0 xi1_1   KO3   ko2   x1_0 x1_1
47.  Reg_NULL   1   xi2_0 xi2_1   KO3   ko3   x2_0 x2_1
48.  Reg_NULL   1   yi0_0 yi0_1   KO3   ko4   y0_0 y0_1
49.  Reg_NULL   1   yi1_0 yi1_1   KO3   ko5   y1_0 y1_1
50.  Reg_NULL   1   yi2_0 yi2_1   KO3   ko6   y2_0 y2_1
51.  Reg_NULL   2   m0_0 m0_1   ko15   ko7   z0_0 z0_1
52.  Reg_NULL   2   m1_0 m1_1   ko16   ko8   z1_0 z1_1
53.  Reg_NULL   2   m2_0 m2_1   ko17   ko9   z2_0 z2_1
54.  Reg_NULL   2   c3_0 c3_1   KO4   ko10   m3_0 m3_1
55.  Reg_NULL   2   c2_0 c2_1   KO4   ko11   m4_0 m4_1
56.  Reg_NULL   2   t5_0 t5_1   KO4   ko12   m5_0 m5_1
57.  Reg_NULL   2   t6_0 t6_1   KO4   ko13   m6_0 m6_1
58.  Reg_NULL   2   t7_0 t7_1   KO5   ko14   m7_0 m7_1
59.  Reg_NULL   3   z0_0 z0_1   Ki   ko15   p0_0 p0_1
60.  Reg_NULL   3   z1_0 z1_1   Ki   ko16   p1_0 p1_1
61.  Reg_NULL   3   z2_0 z2_1   Ki   ko17   p2_0 p2_1
62.  Reg_NULL   3   z3_0 z3_1   Ki   ko18   p3_0 p3_1
63.  Reg_NULL   3   z4_0 z4_1   Ki   ko19   p4_0 p4_1
64.  Reg_NULL   3   z5_0 z5_1   Ki   ko20   p5_0 p5_1
65.  C4   ko7,ko8,ko9,ko10   KO1
66.  C4   ko11,ko12,ko13,ko14   KO2
67.  C2   KO1,KO2   KO3
68.  C3   ko18,ko19,ko20   KO4
69.  C2   ko19,ko20      KO5 
70.  C3   ko4,ko5,ko6   KO6
71.  C3   ko1,ko2,ko3   KO7
72.  C2   KO7,KO6   KO

1.    xi0_1,xi1_1,xi2_1,yi0_1,yi1_1,yi2_1
2.    p0_0,p0_1,p1_0,p1_1,…,p5_0,p5_1
3.    not     xi0_1   xi0_0
4.    not     xi1_1   xi1_0
5.    not     xi2_1   xi2_0 
6.    not     yi0_1   yi0_0
7.    not     yi1_1   yi1_0
8.    not     yi2_1   yi2_0
9.    th22    xi0_1,yi0_1   p0_1
10.  thand0    yi0_0,xi0_0,yi0_1,xi0_1   p0_0
11.  th22    xi0_1,yi1_1   t0_1
12.  th12    xi0_0,yi1_0   t0_0 
13.  th22    xi0_1,yi2_1   t4_1
14.  th12    xi0_0,yi2_0   t4_0
15.  th22  xi1_1,yi0_1 t1_1
16.  th12  xi1_0,yi0_0 t1_0
17.  th22  xi1_1,yi1_1 t2_1
18.  thand0  yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19.  th22  xi1_1,yi2_1 t6_1
20.  th12  xi1_0,yi2_0 t6_0
21.  th22  xi2_1,yi0_1 t3_1
22.  th12  xi2_0,yi0_0 t3_0
23.  th22  xi2_1,yi1_1 t5_1
24.  th12  xi2_0,yi1_0 t5_0
25.  th22  xi2_1,yi2_1 t7_1
26.  thand0    yi2_0,xi2_0,yi2_1,xi2_1   t7_0
27.  th24comp    t0_0,t1_0,t0_1,t1_1   p1_1
28.  th24comp    t0_0,t1_1,t1_0,t0_1   p1_0
29.  th22    t0_1,t1_1   c1_1
30.  th12    t0_0,t1_0   c1_0
31.  th23    t3_0,t2_0,c1_0   c2_0
32.  th23    t3_1,t2_1,c1_1   c2_1
33.  th34w2    c2_0,t3_1,t2_1,c1_1   s1_1
34.  th34w2    c2_1,t3_0,t2_0,c1_0   s1_0
35.  th24comp    s1_0,t4_0,s1_1,t4_1   p2_1
36.  th24comp    s1_0,t4_1,t4_0,s1_1   p2_0
37.  th22    s1_1,t4_1   c3_1
38.  th12    s1_0,t4_0   c3_0
39.  th23    t5_0,c2_0,c3_0   c4_0
40.  th23    t5_1,c2_1,c3_1   c4_1
41.  th34w2    c4_0,t5_1,c2_1,c3_1   s2_1
42.  th34w2    c4_1,t5_0,c2_0,c3_0   s2_0
43.  th24comp    s2_0,t6_0,s2_1,t6_1   p3_1
44.  th24comp    s2_0,t6_1,t6_0,s2_1   p3_0
45.  th22    s2_1,t6_1   c5_1
46.  th12    s2_0,t6_0   c5_0
47.  th23    t7_0,c4_0,c5_0    p5_0
48.  th23    t7_1,c4_1,c5_1   p5_1
49.  th34w2     p5_0,t7_1,c4_1,c5_1   p4_1
50.  th34w2     p5_1,t7_0,c4_0,c5_0   p4_0

Figure 15.2 (a) 3 � 3 NCL multiplier netlist. (b) Converted Boolean netlist
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used to be the rail0 primary inputs, as these are utilized in the internal logic. The
first two lines in the converted netlist are the list of primary inputs and outputs,
respectively, where the inputs correspond to the original NCL netlist’s rail1 inputs,
and the outputs include both rail0 and rail1 outputs. Lines 3–8 in the converted
netlist are the added inverters used to produce the equivalent signals to the original
rail0 inputs, as these were removed in the conversion. The format of each gate is
the same as explained above for the NCL netlist. All Reg_NULL components are
removed during conversion by setting their data outputs equal to their data inputs,
since these have no corresponding functionality in the equivalent Boolean circuit.
Purely C/L circuits will not include Reg_DATA components, as these correspond to
synchronous registers; these will be discussed in Section 15.4.

The converted Boolean netlist is automatically encoded in the SMT-LIB lan-
guage [3], using a conversion tool we developed, which is then input to an SMT
solver to check for functional equivalence with the corresponding specification. For
the 3 � 3 multiplier example, the SMT solver checks for the following safety
property: FNCL_Bool_Equiv. (x2_1, x1_1, x0_1, y2_1, y1_1, y0_1) ¼ MUL (x, y),
where (x2_1, x1_1, x0_1) and (y2_1, y1_1, y0_1) are the x and y rail1 inputs,
respectively, starting with the MSB AQ9. We use the Z3 SMT solver [15] to check for
equivalence, but any combinational equivalence checker could be used. Note that
only the rail1 outputs need to be checked here, as these correspond to the Boolean
specification circuit outputs. The rail0 outputs will be utilized for the invariant
check, described next.

15.3.2 Invariant check
Since only the rail1 outputs are utilized for the functional equivalence check, the
rail0 outputs must also be checked to ensure safety. To address correctness of the
rail0 outputs, an additional SMT invariant proof obligation is required for the ori-
ginal NCL circuit, which states that in any reachable NCL circuit state where the
outputs are all DATA, every rail0 output must be the inverse of its corresponding
rail1 output.

One way to achieve this is to initialize all registers to NULL, all C/L gate
outputs to 0, and all register Ki inputs to rfd (i.e., logic 1), then make all the primary
inputs DATA (i.e., represented in SMT as all combinations of valid DATA) and
step the circuit. This will allow the input DATA to flow through all stages of the
circuit, generating all possible combinations of valid DATA at the primary outputs.
For each primary dual-rail output, the invariant is then checked to ensure that the
rail0 output is the inverse of its corresponding rail1 output. For a C/L circuit with j
registers r1, . . . , rj, k C/L threshold gates g1, . . . , gk, q dual-rail inputs i1, . . . , iq, and
l dual-rail outputs o1<R0, R1>, . . . , ol<R0, R1>, where R0 and R1 are the output’s
rail0 and rail1, respectively, the proof obligation for this invariant check is shown
below as Proof Obligation 1. Predicate P1 indicates that all registers in are reset-to-
NULL. P2 and P3 state that all threshold gates and Ki register inputs are initialized
to logic 0 and 1, respectively. P4 indicates that all inputs are DATA. P5 represents
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the symbolic step of the circuit with all threshold gates set to 0 and all inputs set to
DATA, with the new values of the threshold gates stored in (gB

1, . . . , gB
k). P6 states

that the rails of each dual-rail output are complements of each other. The proof
obligation, PO1, indicates that if DATA is allowed to flow from the primary inputs
to the primary outputs, then for all possible valid DATA inputs, each output’s rail0,
R0, is always the inverse of its respective rail1 output, R1.

Proof Obligation 1:
P1: ^j

n¼1 rA
n ¼ 0b00ð Þ

P2: ^k
n¼1ðgA

n ¼ 0Þ
P3: ^j

n¼1ðKiAn ¼ 1Þ
P4: ^q

n¼1 iAn ¼ 0b01ð Þ _ iA
n ¼ 0b10ð Þ

P5: gB
1; . . .; gB

k
� � ¼ NCLStep iA

1; . . .; iA
qð Þ

P6: ^n
n¼1on

B < R0 >¼ :oB
n < R1 >

PO1: P1 ^ P2 ^ P3 ^ P4 ^ P5 ) P6f g
An alternative, faster method to check invariants is to check each NCL circuit

stage independently. To do this, we developed an algorithm that reads the original
NCL circuit netlist and separately extracts each circuit stage. Then, for each
extracted stage, we set all gate outputs to 0, all stage inputs to DATA, and step the
circuit, such that the stage’s outputs become all possible combinations of valid
DATA. Finally, the invariant is checked for each of the stage’s dual-rail outputs to
ensure that its rail0 is the inverse of its corresponding rail1. The proof obligation for
this second invariant check method is shown below as Proof Obligation 2, where
the extracted stage has j dual-rail inputs i1, . . . , ij, m threshold gates g1, . . . , gm, and
k dual-rail outputs o1<R0, R1>, . . . , ok<R0, R1>, where R0 and R1 are the output’s
rail0 and rail1, respectively. Predicate P1 indicates that all stage inputs are valid
DATA; P2 indicates that all NCL threshold gates in the stage are initialized to 0;
P3 corresponds to a NULL to DATA transition of the stage; and P4 states that the
rails of each dual-rail output are complements of each other. The Proof Obligation,
PO2, states that after a NULL to DATA transition of the stage with all possible
valid DATA inputs, that each output’s rail0, R0, is always the inverse of its
respective rail1 output, R1.

Proof Obligation 2:
P1: ^j

n¼1 iAn ¼ 0b01ð Þ _ iA
n ¼ 0b10ð Þ

P2: ^m
n¼1ðgA

n ¼ 0Þ
P3: gB

1; . . .; gB
mð Þ ¼ NCLStep iA

1; . . .; iA
jð Þ

P4: ^k
n¼1oB

n < R0 >¼ :oB
n < R1 >

PO2: P1 ^ P2 ^ P3 ) P4f g
This second invariant check method is much faster than the first, since it breaks

the problem into a set of smaller invariant checks (i.e., one per stage), whereas the
first method checks the invariant for the entire circuit all at once. For example,
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Method 2 is 38% faster for a two-stage 10 � 10 multiplier, and becomes even faster
when the circuit includes additional stages. Note that for both invariant check
methods, the NCL gates are modeled in SMT as Boolean functions (i.e., no hys-
teresis), since invariant checking only requires the NULL to DATA transition,
which only utilizes each gate’s set function, that is, the same for the Boolean and
NCL state-holding gate implementations. This optimization reduces the invariant
check time by approximately half (e.g., 377 vs. 192 s for a non-pipelined 10-bit �
10-bit unsigned multiplier).

15.3.3 Handshaking check
Liveness means absence of deadlock in a circuit. For combinational NCL circuits,
proper connections between handshaking signals, along with observable and input-
complete C/L, ensures liveness. The same NCL netlist shown in Figure 15.2(a),
used as input for the functional equivalence and invariant checks, is also utilized as
input for the liveness checks. For the handshaking check, the NCL netlist is auto-
matically converted into a graph structure, and the handshaking paths and
C-element connections are traced back to verify proper handshaking, ensuring that
every register acknowledges all preceding stage register outputs that took part in
calculating its input. For each NCL register, i, its dual-rail input is traced back
through its preceding C/L to identify every NCL register’s dual-rail output that took
part in its calculation, generating a fan-in list, reg_fanin(i). For example, referring
to Figure 15.1(a), reg_fanin(8) would be 1, 2, 4, 5, since x0, x1, y0, and y1 are all
used to generate m1. Also, for each NCL register, i, its Ko output is traced through
the C-element handshaking circuitry to identify every NCL register’s Ki input that
registeri’s Ko output took part in calculating, generating a Ko fanout list, ko_fanout(i).
For example, referring to Figure 15.3, which shows the handshaking circuitry for
the 3 � 3 multiplier example, ko_fanout(8) would be 1, 2, 3, 4, 5, 6, since ko8
takes part in the generation of the Ki input for all of the preceding stage’s registers
(i.e., 1–6).

After reg_fanin and ko_fanout for each NCL register is calculated, as shown in
Figure 15.4 for the 3 � 3 multiplier example, reg_fanin(k) is checked to ensure that
it is a subset of ko_fanout(k), for all NCL registers. Note that 0 in reg_fanin denotes
a primary data input; and 0 in ko_fanout denotes the external Ko output. Bit-wise
completion results in reg_fanin(k) being equal to ko_fanout(k), while full-word
completion results in reg_fanin(k) being a proper subset of ko_fanout(k), with the
restriction that each register that is in ko_fanout(k) and not in reg_fanin(k) must be
from the immediate preceding register stage of register k. reg_fanin(k) not being a
subset of ko_fanout(k) could result in deadlock, while reg_fanin(k) being a proper
subset of ko_fanout(k) but violating the stage restriction described above, could
either result in deadlock or may just decrease circuit performance. Hence, if
reg_fanin(k) is a proper subset of ko_fanout(k), then each register that is in
ko_fanout(k) and not in reg_fanin(k) is automatically inspected to ensure that it
meets this stage restriction. If not, a warning message is generated denoting the
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extra register in that particular register’s ko_fanout list, to allow for easier manual
inspection. For the Figure 15.3 example, the first stage utilizes full-word comple-
tion, while the second stage uses bit-wise completion.

An additional check is needed to ensure correct connection of the external Ki
input, namely that the external Ki should be the Ki input to every register that
produces a primary data output. The developed algorithm generates an appropriate
descriptive error message in case the NCL circuit fails to satisfy any of these
handshaking checks. Furthermore, it checks to ensure that no data signal is part of
the handshaking circuitry, and that no handshaking signal is part of a data signal.

The methodology has been demonstrated on several multipliers and ISCAS-85
[16] combinational circuit benchmarks, as shown in Table 15.1. umultN represents
a non-pipelined N-bit � N-bit unsigned multiplier. The NCL-to-Boolean netlist
conversion time was negligible compared to the safety and invariant checks
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Figure 15.3 Handshaking connections for the 3 � 3 NCL multiplier
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performed by the Z3 SMT solver [15] on an Intel� CoreTM i7-4790 CPU with
32GB of RAM, running at 3.60 GHz. To test the methodology, we injected several
bugs. The umult10-Bn multipliers are circuits with n different kinds of bugs, and
the (B) in either the Functional Check, Invariant check, or Handshaking Check
column denotes which check detected the bug. The –B1 bug incorrectly swaps rails
of a dual-rail signal. –B2 represents a faulty data connection. For example, the F
output of NCL gatei should be connected to the X input of NCL gatej; however, X is

1: reg_fanin: 0 ko_fanout: 0
2: reg_fanin: 0 ko_fanout: 0
3:  reg_fanin: 0 ko_fanout: 0
4:  reg_fanin: 0                               ko_fanout: 0
5:  reg_fanin: 0                                 ko_fanout: 0
6:  reg_fanin: 0                                ko_fanout: 0
7:  reg_fanin: [1, 4]                          ko_fanout: [1, 2, 3, 4, 5, 6]
8:  reg_fanin: [1, 2, 4, 5]                  ko_fanout: [1, 2, 3, 4, 5, 6]
9:  reg_fanin: [1, 2, 3, 4, 5, 6]          ko_fanout: [1, 2, 3, 4, 5, 6]

10: reg_fanin: [1, 2, 3, 4, 5, 6]         ko_fanout: [1, 2, 3, 4, 5, 6]
11: reg_fanin: [1, 2, 3, 4, 5]             ko_fanout: [1, 2, 3, 4, 5, 6]
12: reg_fanin: [3, 5]                         ko_fanout: [1, 2, 3, 4, 5, 6]
13: reg_fanin: [2, 6]                         ko_fanout: [1, 2, 3, 4, 5, 6]
14: reg_fanin: [3, 6]                         ko_fanout: [1, 2, 3, 4, 5, 6]
15: reg_fanin: [7]                             ko_fanout: [7]
16: reg_fanin: [8]                             ko_fanout: [8]
17: reg_fanin: [9]                             ko_fanout: [9]
18: reg_fanin: [10, 11, 12, 13]         ko_fanout: [10, 11, 12, 13]
19: reg_fanin: [10, 11, 12, 13, 14]       ko_fanout: [10, 11, 12, 13, 14] 
20: reg_fanin: [10, 11, 12, 13, 14]       ko_fanout: [10, 11, 12, 13, 14] 

Figure 15.4 reg_fanin and ko_fanout lists for the 3 � 3 NCL multiplier

Table 15.1 Verification results of various C/L NCL circuits

Circuits Functional
check (s)

Invariant
check (s)

Handshaking
check (s)

Total
time (s)

ISCAS c17 0.01 0.01 0.0020 0.0220
umult2 0.02 0.01 0.0997 0.1297
umult3 0.04 0.02 0.1087 0.1687
umult6 0.32 0.33 0.8238 1.4738
umult8 10.62 6.79 9.3090 26.719
umult10 683.49 192.39 70.370 946.25
ISCAS c432 1.03 1.06 3.0111 5.1011
umult10-B1 0.08 (B) 0.10 (B) 70.370 70.550
umult10-B2 0.06 (B) 192.39 70.370 262.82
umult10-B3 683.49 192.39 69.1538 (B) 945.034
umult10-B4 683.49 0.08 (B) 72.0235 (B) 755.5935
umult10-B5 0.1 (B) 0.09 (B) 70.37 71.37
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instead connected to the output of NCL gatek, which results in a logical error. –B3
corresponds to an incorrect handshaking connection; and external Ki and Ko bugs
are represented by –B4. –B5 denotes a rail-duplication error, where rail0 and rail1

of a particular signal are the same wire. Z3 reported all functional and invariant
bugs along with a counter example; and our handshaking check tool identified and
reported the location of all inserted completion logic bugs.

15.3.4 Input-completeness check
Input-completeness requires that all outputs of a combinational circuit may not
transition from NULL to DATA until all inputs have transitioned from NULL to
DATA, and that all outputs of a combinational circuit may not transition from
DATA to NULL until all inputs have transitioned from DATA to NULL [12]. In
circuits with multiple outputs, it is acceptable according to Seitz’s “weak condi-
tions” of delay-insensitive signaling, for some of the outputs to transition without
having a complete input set present, as long as all outputs cannot transition before
all inputs arrive [17]. Input-completeness of every C/L stage is required for NCL
circuits to be QDI; an input-incomplete stage may cause the circuit to deadlock
under some timing scenarios.

There are two proof obligations required for verification of input-
completeness. These two proof obligations have been developed to accommodate
two scenarios, the first for when the circuit transitions from NULL to DATA, and
the second for the transition from DATA to NULL. Both proof obligations have
been generalized so that they apply to all NCL combinational circuits. The proof
obligations have been encoded in a decidable fragment of first-order logic, and are
automatically checked using an SMT solver.

15.3.4.1 Input-completeness proof obligation: NULL to DATA
Assume an NCL circuit has m threshold gates, p dual-rail-inputs, and q dual-rail
outputs. Let gA

1; . . . ; gA
m represent Boolean variables that correspond to the current

state of the NCL threshold gates before step A, and gB
1; . . . ; gB

m represent the same
threshold gates’ state after step A. Let iA1; . . . ; iAp represent the circuit inputs for
step A, and iB

1; . . . ; iB
p for step B. Let oA

1; . . . ; oA
q be the circuit output values after

symbolically stepping the circuit using inputs iA1; . . . ; iAp and threshold gate states
gA

1; . . . ; gA
m: Let oB

1; . . . ; oB
q be the circuit output values after symbolically

stepping the circuit using inputs iB1; . . . ; iBp and threshold gate states gB
1; . . . ; gB

m:
The predicates used in the proof obligations for input-completeness are given in
Table 15.2.

p0 indicates that no dual-rail inputs are in an illegal state. p1 states that all the
threshold gate’s current output values are 0, which indicates that the circuit is in the
NULL state before a DATA transition. p2 indicates that at least one of the dual rail
inputs is NULL, and p3 indicates that at least one of the dual-rail outputs is NULL.
Proof Obligation PO3, below, is used to check input-completeness of the NULL to
DATA transition of the circuit. PO3 essentially states that if none of the inputs are
ILLEGAL, all current threshold gate outputs are 0, and at least one of the dual-rail
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inputs is NULL, then at least one of the dual-rail outputs must be NULL. Since the
dual-rail inputs in the proof obligation are symbolic, the SMT solver checks this
property for all possible input combinations.

PO3: p0 ^ p1 ^ p2f g ! p3

15.3.4.2 Input-completeness proof obligation: DATA to NULL
When NCL circuits are constructed using only threshold gates with hysteresis,
ensuring input-completeness of the NULL to DATA transition guarantees input-
completeness of the DATA to NULL transition, since gate hysteresis ensures that a
gate output cannot transition to 0 until all its inputs transition to 0. However, this is
not the case for relaxed NCL circuits [13], which are comprised of both threshold
gates with hysteresis and Boolean gates. Hence, for relaxed NCL circuits, input-
completeness of the DATA to NULL transition must also be checked.

To formulate the DATA to NULL proof obligation, the circuit must first be
symbolically initialized with all possible threshold gate outputs after a transition
from NULL to DATA. This is done by first initializing the circuit to the NULL
state (i.e., all threshold gates are set to 0) and then stepping the circuit with valid
symbolic DATA (i.e., not NULL and not illegal) inputs, identified as step A.

Table 15.2 Proof obligation predicates for
input-completeness

pn Predicate

p0 ⋀
n¼p

n¼1
� iA

n ¼ 0b11ð Þ

p1 ⋀
n¼m

n¼1
gA

n ¼ 0ð Þ

p2 ⋁
n¼p

n¼1
iA

n ¼ 0b00ð Þ

p3 ⋁
n¼q

n¼1
oA

n ¼ 0b00ð Þ

p4 ⋀
n¼p

n¼1
iA

n ¼ 0b01ð Þ _ iAn ¼ 0b10ð Þð Þ

p5 gB
1; . . . ; gB

mð Þ ¼ NCLStep iA
1; . . . ; iA

pð Þ
p6 ⋀

n¼p

n¼1
iB

n ¼ iA
nð Þ _ iB

n ¼ 0b00ð Þð Þ

p7 ⋁
n¼p

n¼1
iB

n ¼ iA
nð Þ

p8 ⋁
n¼q

n¼1
oB

n ¼ 0b01ð Þ _ oB
n ¼ 0b10ð Þð Þ
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The symbolic values of the threshold gates from step A are retained, and the circuit
is symbolically stepped again with new inputs, identified as step B, which repre-
sents the DATA to NULL transition.

p1 initializes all threshold gate outputs to 0 before step A. p4 indicates that all
step A inputs are DATA. p5 represents the symbolic step of the circuit with all
threshold gates set to 0 and all inputs set to DATA, with the new values of the
threshold gates stored in gB

1; . . . ; gB
mð Þ. p6 indicates that each input for step B is

either the same DATA value it was for step A, or has transitioned to NULL. p7

indicates that at least one of the inputs for step B is still DATA; and p8 indicates
that at least one of the outputs of step B remains DATA. The final proof obligation
for input-completeness of the DATA to NULL transition is given below as PO4. It
states that after initializing the circuit to the NULL state and symbolically stepping
the circuit with all possible DATA inputs to generate all possible DATA states, that
if at least one dual-rail input remains DATA while other inputs may transition to
NULL, then at least one of the outputs must remain DATA, meaning that the circuit
has not fully transitioned to the NULL state, because all inputs have not yet tran-
sitioned to NULL. Like the NULL to DATA proof obligation, all inputs are sym-
bolic, so the SMT solver checks all combinations.

PO4: p1 ^ p4 ^ p5 ^ p6 ^ p7f g ! p8

15.3.4.3 Input-completeness results
Verification of the proof obligations for input-completeness can be performed
using any SMT solver. To perform input-completeness verification, we developed a
tool to automatically generate the circuit model and proof obligation specifications,
encoded in SMT-LIB format, from the original circuit netlist, such as the one
shown in Figure 15.2(a) for the 3 � 3 multiplier. For the verification results pre-
sented here, N-bit � N-bit unsigned dual-rail NCL multipliers were used as
benchmarks, where 3 � N � 15. The ISCAS-85 C432 27-channel interrupt con-
troller circuit was also used as a benchmark [18]. The verification proof obligations
were checked using the Z3 SMT solver on an Intel� CoreTM i7-4790 CPU with
32GB of RAM, running at 3.60 GHz.

The verification results are listed in Table 15.3, where the first column is the
Circuit Name, the second column is the verification time for the NULL to DATA
proof obligation of a correct input-complete implementation, the third column is
the verification time for the NULL to DATA proof obligation of an incorrect input-
incomplete implementation, and columns four and five report the verification times
for the DATA to NULL proof obligations for input-complete and input-incomplete
implementations, respectively. umultN represents an N-bit � N-bit unsigned mul-
tiplier constructed using only NCL gates with hysteresis, while r � umultN repre-
sents a relaxed version of the N-bit � N-bit multiplier, where NCL gates are
replaced with Boolean gates when hysteresis is not required for input-
completeness. Timeout (TO) is listed in the verification results when the verifica-
tion time exceeded 1 day.

Formal verification of NCL circuits 321

JiaDi-6990448 23 August 2019; 16:0:25



The benchmark multipliers were designed as shown for the 3 � 3 version in
Figure 15.1, with input-complete AND functions to generate the XiYi partial pro-
ducts and input-incomplete AND functions for the XiYj partial products, where
i 6¼ j, but without the intermediate NCL register (i.e., a single stage with only input
and output registers [19]). To create the buggy non-relaxed versions, 1 � k � N
was chosen at random and the input-complete AND function used to generate the
XkYk partial product was replaced with an input-incomplete version. NCL HAs and
FAs are inherently input-complete and therefore cannot be made input-incomplete
when constructed only using NCL gates with hysteresis. The relaxed version of
each multiplier was constructed by taking the non-relaxed version and replacing
the TH22 gate within the input-incomplete AND functions and HAs with a Boolean
AND gate. Buggy relaxed circuits were constructed by relaxing one of the fol-
lowing: either the TH22 or THand0 gate in a XiYi partial product AND function, a
TH24comp gate in a HA, or either a TH34w2 or TH23 gate in a FA. The ISCAS-85
C432 circuit was designed using input-incomplete functions when possible while

Table 15.3 Input-completeness verification times (s)

Circuit N to D Buggy N to D D to N Buggy D to N

umult3 0.02 0.01 0.03 0.04
umult4 0.02 0.05 0.06 0.06
umult5 0.09 0.05 0.12 0.11
umult6 0.11 0.15 0.38 0.24
umult7 0.38 0.27 1.49 1.23
umult8 1.44 0.49 5.47 3.60
umult9 5.30 2.37 22.38 1.28
umult10 20.22 8.92 102.42 18.45
umult11 54.09 2.99 430.29 22.81
umult12 236.00 8.21 1,909.44 23.17
umult13 885.30 3.85 7,401.11 15.11
umult14 3,424.89 114.41 34,961.6 8.26
umult15 9,663.01 19.41 TO 112.55
r � umult3 0.02 0.02 0.04 0.07
r � umult4 0.02 0.02 0.06 0.07
r � umult5 0.05 0.04 0.10 0.08
r � umult6 0.15 0.12 0.42 0.07
r � umult7 0.39 0.12 1.48 0.11
r � umult8 1.38 1.43 6.38 0.17
r � umult9 4.74 5.17 28.03 0.20
r � umult10 16.26 19.02 146.95 0.20
r � umult11 58.04 46.53 642.80 0.31
r � umult12 215.75 228.47 3,635.01 0.35
r � umult13 729.11 34.97 15,663.24 0.40
r � umult14 3,045.99 4,104.45 80,213.90 0.68
r � umult15 10,561.11 9,974.39 TO 0.308
C432 0.062 0.068 0.074 0.94
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maintaining input-completeness. The buggy version was obtained by replacing one
of the input-complete 3-input NAND functions that calculate RC, in Module M3
[20], with an input-incomplete version. Z3 reported all bugs along with a counter
example.

15.3.5 Observability check
Observability requires every gate transition to be observable at the output, which
means that every gate that transitions is necessary to transition at least one output.
Observability of every gate in every C/L stage is required for NCL circuits to be
QDI; an unobservable gate in any stage may cause the circuit to deadlock under
some timing scenarios. Observability can be proven in a similar fashion to input-
completeness. Two proof obligations are needed for each C/L gate, one for the
NULL to DATA transition, and the other for the DATA to NULL transition. The
proof obligations, like those for input-completeness, have been encoded in a
decidable fragment of first order logic and are automatically checked using an SMT
solver.

15.3.5.1 Observability proof obligation: NULL to DATA
To verify observability, a check must be performed on each C/L gate. For each gate
g1, . . . , gm, assertion of that gate is first computed, denoted as f1; . . . ; fm ¼ 1,
respectively. During the NULL to DATA observability verification of gn, where
1 � n � m, the output of gn is forced to 0. Simulation of a circuit with gn forced to
0 is called a Gn0 simulation, and the resulting function is nclcktGn0 i1; . . . ; ipð Þ. To
formulate the DATA to NULL observability proof obligation, the circuit must first
be symbolically initialized with all possible threshold gate outputs that assert gn

after a transition from NULL to DATA. This is done by first initializing the circuit
to the NULL state (i.e., all threshold gates are set to 0) and then stepping the circuit
with valid symbolic DATA (i.e., not NULL and not illegal) inputs, identified as
step A. The symbolic values of the threshold gates from step A are retained as
gB

1; . . . ; gB
m; and the circuit is symbolically stepped again with new inputs, iden-

tified as step B, which represents the DATA to NULL transition. During the ver-
ification of gn, where 1 � n � m, the output of gn is forced to 1. Simulation of a
circuit with gn forced to 1 is called a Gn1 simulation, and the resulting function is
nclcktGn1 i1; . . . ; ipð Þ. Additional predicates used in the proof obligations for
observability are given in Table 15.4.

p1 states that all the threshold gates’ current output value is 0, which indicates
that the circuit is in the NULL state before a DATA transition. p4 indicates that
every circuit input is valid DATA. p9 assigns the outputs of the NCL circuit for a
Gn0 simulation, where the output of gn, the gate under test, is forced to 0. p10

enables only valid input combinations that would assert gn to be used to step the
circuit in p9. Finally, p11 ensures that at least one of the outputs is NULL. The proof
obligation to test observability of the NULL to DATA transition is given below as
PO5, which tests observability of all gates, g1, . . . , gm. If true for gn, this ensures
that there is at least one output that will not be asserted if gn is not asserted, for all
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sets of inputs in which gn should be asserted, therefore proving that gn is observable
for the NULL to DATA transition.

PO5 : ⋀
n¼m

n¼1
p1 ^ p4 ^ p9 ^ p10f g ! p11ð Þ

15.3.5.2 Observability proof obligation: DATA to NULL
Like input-completeness, NCL circuits consisting only of NCL gates with hyster-
esis are inherently observable for the DATA to NULL transition if observable for
the NULL to DATA transition, since gate hysteresis ensures that a gate output
cannot transition to 0 until all its preceding gates’ outputs transition to 0. However,
this is not the case for relaxed NCL circuits, which are comprised of both threshold
gates with hysteresis and Boolean gates. Hence, for relaxed NCL circuits, obser-
vability of the DATA to NULL transition must also be checked.

p1 initializes all threshold gate outputs to 0 before step A. p4 indicates that all
step A inputs are DATA. p5 represents the symbolic step of the circuit with all
threshold gates set to 0 and all inputs set to DATA, with the new values of the
threshold gates stored in gB

1; . . . ; gB
mð Þ. p10 enables only valid input combinations

that would assert gn to be used to step the circuit in p5. p12 indicates that all inputs
for step B have transitioned to NULL. p13 assigns the outputs of the NCL circuit for
a Gn1 simulation, where the output of gn, the gate under test, is forced to 1. Finally,
p14 ensures that all outputs are not NULL. The proof obligation to test observability
of the DATA to NULL transition is given below as PO6, which tests observability
of all gates, g1, . . . , gm. If true for gn, this ensures that following a NULL to DATA
transition that asserts gn, there is at least one output that will not become NULL
during the subsequent DATA to NULL transition while gn remains asserted,
therefore proving that gn is observable for the DATA to NULL transition.

PO6: ⋀
n¼m

n¼1
p1 ^ p4 ^ p5 ^ p10 ^ p12 ^ p13f g ! p14ð Þ

Table 15.4 Additional proof obligation predicates for
observability

pn Predicate

p9 oA
1; . . . ; oA

qð Þ ¼ nclcktGn0 iA
1; . . . ; iA

pð Þ
p10 fn ¼ 1

p11 ⋁
n¼q

n¼1
oB

n ¼ 0b00ð Þ

p12 ⋀
n¼p

n¼1
iB

n ¼ 0b00ð Þ

p13 oB
1; . . . ; oB

qð Þ ¼ nclcktGn1 iB
1; . . . ; iB

pð Þ
p14 � ⋀

n¼q

n¼1
oB

n ¼ 0b00ð Þ
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15.3.5.3 Observability results
Verification of the proof obligations for observability can be performed using any
SMT solver. To perform observability verification, we developed a tool to auto-
matically generate the circuit model and proof obligation specifications, encoded
in SMT-LIB format, from the original circuit netlist, such as the one shown in
Figure 15.2(a) for the 3 � 3 multiplier. For the verification results presented here,
N-bit � N-bit unsigned dual-rail NCL multipliers were used as benchmarks, where
3 � N � 13. The ISCAS-85 C432 27-channel interrupt controller circuit was also
used as a benchmark [18]. The verification proof obligations were checked using
the Z3 SMT solver on an Intel� CoreTM i7-4790 CPU with 32GB of RAM, running
at 3.60 GHz.

The verification results are listed in Table 15.5, where the first column is the
Circuit name, the second column is the verification time for the NULL to DATA
proof obligation, and the third column is the verification time for the DATA to
NULL proof obligation. umultN represents an N-bit � N-bit unsigned multiplier
constructed using only NCL gates with hysteresis, while r � umultN represents a
relaxed version of the N-bit � N-bit multiplier, where NCL gates are replaced with
Boolean gates when hysteresis is not required. TO is listed in the verification
results when the verification time exceeded 1 day.

The test multipliers were designed exactly the same as the ones used for
testing input-completeness (i.e., input-complete AND functions generate the XiYi

partial products, and input-incomplete AND functions generate the XiYj partial
products, where i 6¼ j). To create buggy multipliers that were input-complete but
not observable, an HA was chosen at random and the XOR function to generate
its sum (i.e., the two TH24comp gates in Figure 15.1(d)) was replaced with the
unobservable XOR function, shown in Figure 15.5. To check observability of
relaxed circuits, the M1 module of the ISCAS-85 C432 benchmark [21] was
used, where the nine-input NAND function that generates PA AQ10was composed
of two relaxed input-incomplete four-input AND functions, followed by an

Table 15.5 Observability verification times (s)

Circuit N to D D to N

umult4 0.001 0.001
umult5 8.203 8.944
umult6 13.7599 16.1921
umult7 27.8229 36.528
umult8 54.062 105.4979
umult9 138.3139 412.605
umult10 363.7079 1,968.434
umult11 902.046 9,657.475
umult12 2,384.504 52,093.64
umult13 5,797.037 TO
C432M1 1.53 3.882
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input-complete two-input AND function, and then an input-complete two-input
NAND function, as shown in Figure 15.6. To create a buggy version that was
input-complete but not observable, either of the two gates comprising the two-
input AND function in Figure 15.6 could be relaxed. The test times reported for
the circuits are for testing every single gate for observability, even if a previous
gate was found to be unobservable. Therefore, the time to detect a buggy circuit
will be less than or equal to the reported times, since the rest of the gates would no
longer need to be tested once an unobservable gate was identified. Z3 reported all
bugs along with a counter example.

X0

X1

Y0
2

1

2

3 Z1

Z0

Y1

Figure 15.5 Unobservable NCL XOR
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A
B
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C
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2
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Relaxed input-
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AND2

Input-complete NAND2

PA0

Figure 15.6 ISCAS-85 C432 M1 module nine-input NCL NAND that
generates PA
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15.4 Equivalence verification for sequential
NCL circuits

As described in Section 15.3.1, our equivalence verification methodology proved to
be a fast and scalable approach for C/L NCL circuits. Hence, in this section we
extend that approach to verify both safety and liveness of sequential NCL circuits,
which is more complex due to datapath feedback.

To describe our methodology, we’ll use an unsigned Multiply and Accumulate
(MAC) unit as an example circuit. Figure 15.7(a) shows a synchronous MAC,
where A0 ¼ A þ X � Y; and Figure 15.7(b) shows the equivalent NCL version. The
four-phase QDI handshaking protocol utilized for NCL circuits requires at least
2N þ 1 NCL registers in a feedback loop that contains N DATA tokens, in order to
avoid deadlock [12].

Hence, at least three NCL registers are needed in the MAC feedback loop to
avoid deadlock, as shown in Figure 15.7(b). Although the synchronous and NCL
MACs seem similar, they are structurally very different. Synchronous registers are
clocked, whereas alternating DATA/NULL transitions in NCL are maintained via
C-elements and a well-defined handshaking scheme. Ki and Ko are the external
request input and acknowledge output, respectively.

Figure 15.8 shows the datapath diagram for a 4 þ 2 � 2 NCL MAC with two
C/L stages and four registers in the feedback loop (note that including a 4th register

(a)

Combinational
unit

X

Y

A׳

A

A
N-bit register

Reset

Reset to 0

Clock

X

Y
NCL

combinational
unit

A׳

A

COMP

Ko

Ki

A

NCL register NCL register NCL register

Reset to NULL Reset to DATA0Reset to NULL

COMP

Reset

Ko KiKoKi KiKo

(b)

Figure 15.7 MAC circuit: (a) synchronous; (b) NCL
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in the feedback loop increases throughput compared to using the minimum required
three registers, since this allows the DATA and NULL wavefronts to flow more
independently [12]). (Xi1, Xi0) and (Yi1, Yi0) are the two bits of inputs Xi and Yi,
respectively. The product of Xi and Yi is added with the 4-bit accumulator output,
Acci, where Acci3 and Acci0 are the MSB and LSB AQ11, respectively. All signals shown
in Figure 15.8 are dual-rail signals. HA and FA are the NCL half-adder and full-
adder components, shown in Figure 15.1(d) and (e), respectively; and FA is a full-
adder component without a carry output; hence, it utilizes two two-input XOR

HA
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Figure 15.8 4 þ 2 � 2 NCL MAC datapath
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functions, each comprised of two TH24comp gates (same as the HA sum output
shown in Figure 15.1(d)), to compute its sum output. The highlighted components
in Figure 15.8 are the NCL registers.

Figure 15.9(a) shows the netlist of the NCL 4 þ 2 � 2 MAC, following the
same structure as described in Section 15.3.1. The first two lines are the circuit
inputs and outputs, respectively; lines 3–38 are the NCL threshold gates; lines 39–61
are the NCL registers; and lines 62–69 are C-elements used in the handshaking
network.

15.4.1 Safety
Safety verification requires two steps. In the first step, we take a sequential NCL
circuit and convert it to an equivalent synchronous circuit. We utilize the theory of
WEB refinement [2] to compare the synchronous netlist generated from the NCL
circuit with the original synchronous specification, as the notion of correctness. The
major advantage of applying WEB refinement to the generated equivalent syn-
chronous circuit instead of the actual NCL circuit is that a synchronous circuit is
much more deterministic compared to its NCL equivalent, which makes the ver-
ification time much faster. The generated synchronous circuit, specification syn-
chronous circuit, and the WEB-refinement property are automatically encoded in
the SMT-LIB language. The resulting equivalence property is then checked using
an SMT solver. In the second step, we check the invariant for each C/L stage, the
same as previously discussed in Section 15.3.2.

The converted netlist (NCL-SYNC) is depicted in Figure 15.9(b). The con-
version algorithm for sequential NCL circuits is slightly different than for C/L NCL
circuits, described in Section 15.3.1, since the sequential NCL circuit contains
reset-to-DATA registers, which are replaced with a 2-bit resettable synchronous
register, 1 bit for each rail of the corresponding NCL dual-rail register. Like for C/L
NCL circuits, all reset-to-NULL registers, handshaking signals, and C-elements are
eliminated; and all C/L NCL gates are replaced with their corresponding relaxed
(i.e., Boolean) gate.

The NCL-SYNC netlist must next be checked against the synchronous speci-
fication (SPEC-SYNC) netlist for equivalence. When verifying C/L NCL circuits,
the circuit functionality could be specified as a Boolean function. However, since
sequential circuits involve states and transitions, we use TSs as the formal model to
capture the behaviors of both the NCL-SYNC netlist as well as the SPEC-SYNC
netlist. The theory of WEB refinement [2] defines what it means for an imple-
mentation TS to be functionally equivalent to a specification TS. Therefore, we use
the theory of WEB refinement for checking equivalence for sequential circuits.

The theory of WEB refinement allows for stutter between the implementation
TS and the specification TS. What this means is that multiple but finite transitions
of the implementation can match to a single specification transition. Rank functions
(functions that map circuit states to natural numbers) are used to distinguish finite
stutter from deadlock (infinite stutter). Another characteristic of WEB refinement is
the use of refinement maps, which are functions that map implementation states to
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(a) (b)

1.    xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1
2.    acci0_0,acci0_1,acci1_0,acci1_1,…,acci3_0,acci3_1
3.    th22    x0_1,y0_1   t0_1
4.    thand0  y0_0,x0_0,y0_1,x0_1   t0_0
5.    th12    x1_0,y0_0   t1_0
6.    th22    x1_1,y0_1   t1_1
7.    th12    x0_0,y1_0   t2_0
8.    th22    x0_1,y1_1   t2_1
9.    th12    x1_0,y1_0   t3_0
10.  th22    x1_1,y1_1   t3_1
11.  th24comp    t2_0,t1_1,t1_0,t2_1   t4_0
12.  th24comp    t2_0,t1_0,t2_1,t1_1   t4_1
13.  th12    t2_0,t1_0   c0_0
14.  th22    t1_1,t2_1   c0_1
15.  th24comp    acc0_0,t0_1,t0_0,acc0_1   t5_0
16.  th24comp    acc0_0,t0_0,acc0_1,t0_1   t5_1
17.  th12    acc0_0,t0_0   c1_0
18.  th22    t0_1,acc0_1   c1_1
19.  th24comp    acc1_0,t4_1,t4_0,acc1_1   t6_0
20.  th24comp    acc1_0,t4_0,acc1_1,t4_1   t6_1
21.  th12    acc1_0,t4_0   c2_0
22.  th22    t4_1,acc1_1   c2_1
23.  th23    t3_0,acc2_0,c0_0   c3_0
24.  th23    t3_1,acc2_1,c0_1   c3_1
25.  th34w2    c3_1,t3_0,acc2_0,c0_0   t7_0
26.  th34w2    c3_0,t3_1,acc2_1,c0_1   t7_1
27.  th24comp    r1_0,r2_1,r2_0,r1_1   t8_0
28.  th24comp    r1_0,r2_0,r1_1,r2_1   t8_1
29.  th12    r1_0,r2_0   c4_0
30.  th22    r2_1,r1_1   c4_1
31.  th23    r4_0,r3_0,c4_0   c5_0
32.  th23    r4_1,r3_1,c4_1   c5_1
33.  th34w2    c5_1,r4_0,r3_0,c4_0   t9_0
34.  th34w2    c5_0,r4_1,r3_1,c4_1   t9_1
35.  th24comp    r5_0,r6_1,r6_0,r5_1   c6_0
36.  th24comp    r5_0,r6_0,r5_1,r6_1   c6_1
37.  th24comp    c5_0,c6_1,c6_0,c5_1   t10_0
38.  th24comp    c5_0,c6_0,c5_1,c6_1   t10_1
39.  Reg_NULL 1   xi0_0,xi0_1   KO2   ko1   x0_0,x0_1
40.  Reg_NULL 1   xi1_0,xi1_1   KO2   ko2   x1_0,x1_1
41.  Reg_NULL 1   yi0_0 yi0_1   KO2   ko3   y0_0 y0_1
42.  Reg_NULL 1   yi1_0 yi1_1   KO2   ko4   y1_0 y1_1
43.  Reg_NULL 1   acci0_0 acci0_1  KO2   ko5   acc0_0 acc0_1
44.  Reg_NULL 1   acci1_0 acci1_1  KO2   ko6   acc1_0 acc1_1
45.  Reg_NULL 1   acci2_0 acci2_1  KO2   ko7   acc2_0 acc2_1
46.  Reg_NULL 1   acci3_0 acci3_1  KO2   ko8   acc3_0 acc3_1
47.  Reg_NULL  2  t5_0  t5_1  ko16  ko9     r0_0  r0_1
48.  Reg_NULL  2  c1_0  c1_1  KO3   ko10  r1_0  r1_1
49.  Reg_NULL  2  t6_0 t6_1   KO3   ko11    r2_0 r2_1
50.  Reg_NULL  2  c2_0 c2_1  KO3   ko12    r3_0 r3_1
51.  Reg_NULL  2  t7_0 t7_1  KO3   ko13    r4_0 r4_1
52.  Reg_NULL  2  c3_0 c3_1  KO3   ko14    r5_0 r5_1
53.  Reg_NULL  2  acc3_0 acc3_1  KO3   ko15    r6_0 r6_1
54.  Reg_NULL  3  r0_0 r0_1  ko20   ko16    p0_0 p0_1
55.  Reg_NULL  3  t8_0 t8_1  ko21   ko17    p1_0 p1_1
56.  Reg_NULL  3  t9_0 t9_1  ko22   ko18    p2_0 p2_1
57.  Reg_NULL  3  t10_0 t10_1  ko23   ko19   p3_0 p3_1
58.  Reg_DATA0 4  p0_0  p0_1   KO4   ko20   acci0_0  acci0_1
59.  Reg_DATA0 4  p1_0  p1_1   KO5   ko21   acci1_0  acci1_1
60.  Reg_DATA0 4  p2_0  p2_1   KO6   ko22   acci2_0  acci2_1
61.  Reg_DATA0 4  p3_0  p3_1   KO7   ko23   acci3_0  acci3_1
62.  C4   ko9,ko10,ko11,ko12  KO1
63.  C4   ko13,ko14,ko15,KO1   KO2
64.  C3   ko17,ko18,ko19  KO3
65.  C2   Ki,ko5   KO4
66.  C2   Ki,ko6   KO5
67.  C2   Ki,ko7   KO6
68.  C2   Ki,ko8   KO7
69.  C4   ko1,ko2,ko3,ko4   KO

1.    xi0_1,xi1_1, yi0_1,yi1_1
2.    acci0_0,acci0_1,acci1_0,acci1_1,…,acci3_0,acci3_1
3.    not   xi0_1  xi0_0
4.    not   yi0_1  yi0_0
5.    not   xi1_1  xi1_0
6.    not   yi1_1  yi1_0  
7.    th12    xi0_0,yi0_0   t0_0
8.    th22    xi0_1,yi0_1   t0_1
9.    th12    xi1_0,yi0_0   t1_0
10.  th22    xi1_1,yi0_1   t1_1
11.  th12    xi0_0,yi1_0   t2_0
12.  th22    xi0_1,yi1_1   t2_1
13.  th12    x1_0,y1_0   t3_0
14.  th22    x1_1,y1_1   t3_1
15.  th24comp    t2_0,t1_1,t1_0,t2_1   t4_0
16.  th24comp    t2_0,t1_0,t2_1,t1_1   t4_1
17.  th12    t2_0,t1_0   c0_0
18.  th22    t1_1,t2_1   c0_1
19.  th24comp    acci0_0,t0_1,t0_0,acci0_1   t5_0
20.  th24comp    acci0_0,t0_0,acci0_1,t0_1   t5_1
21.  th12    acci0_0,t0_0   c1_0
22.  th22    t0_1,acci0_1   c1_1
23.  th24comp    acci1_0,t4_1,t4_0,acci1_1   t6_0
24.  th24comp    acci1_0,t4_0,acci1_1,t4_1   t6_1
25.  th12    acci1_0,t4_0   c2_0
26.  th22    t4_1,acci1_1   c2_1
27.  th23    t3_0,acci2_0,c0_0   c3_0
28.  th23    t3_1,acci2_1,c0_1   c3_1
29.  th34w2    c3_1,t3_0,acci2_0,c0_0   t7_0
30.  th34w2    c3_0,t3_1,acci2_1,c0_1   t7_1
31.  th24comp    c1_0,t6_1,t6_0,c1_1   t8_0
32.  th24comp    c1_0,t6_0,c1_1,t6_1   t8_1
33.  th12    c1_0,t6_0   c4_0
34.  th22    t6_1,c1_1   c4_1
35.  th23    t7_0,c2_0,c4_0   c5_0
36.  th23    t7_1,c2_1,c4_1   c5_1
37.  th34w2    c5_1,t7_0,c2_0,c4_0   t9_0
38.  th34w2    c5_0,t7_1,c2_1,c4_1   t9_1
39.  th24comp    c3_0,acci3_1,acci3_0,c3_1   c6_0
40.  th24comp    c3_0,acci3_0,c3_1,acci3_1   c6_1
41.  th24comp    c5_0,c6_1,c6_0,c5_1   t10_0
42.  th24comp    c5_0,c6_0,c5_1,c6_1   t10_1
43.  Reg_0    t5_0  t5_1   acci0_0  acci0_1
44.  Reg_0    t8_0  t8_1   acci1_0  acci1_1
45.  Reg_0    t9_0  t9_1   acci2_0  acci2_1
46.  Reg_0    t10_0  t10_1   acci3_0  acci3_1

Figure 15.9 (a) 4 þ 2 � 2 NCL MAC netlist. (b) Converted synchronous
equivalent netlist
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specification states. Refinement maps allow for the implementation and specifica-
tion to be specified at significantly different abstraction levels. However, since the
rail1 registers of NCL-SYNC and the registers of SPEC-SYNC have a one-to-one
mapping, there is no stutter between these two TSs, and the refinement is simply a
projection of the rail1 registers of the implementation state to the registers of the
specification state. Therefore, the correctness proof obligations required for ver-
ifying WEB refinement can be reduced to the proof obligation depicted in
Figure 15.10, where s is a state of NCL-SYNC; u is a SPEC-SYNC state obtained
by projecting the values of the rail1 registers from state s; StepSYNC_NCL and
StepSYNC_SPEC are the functions that correspond to a single step of the NCL-SYNC
circuit and the SPEC-SYNC circuit, respectively; w is the state obtained by step-
ping NCL-SYNC from state s; and v is the state obtained by stepping SPEC-SYNC
from state u. The proof obligation states that the two circuits are functionally
equivalent if for every state s of NCL-SYNC, the corresponding projection of
values from the rail1 registers of the w state are equivalent to the values of the
corresponding registers in the v state. This proof obligation can be encoded in the
SMT-LIB language, as shown below in PO7, and checked using an SMT solver.

PO7 : 8s :: s 2 SSYNC NCL ::f
u ¼ Reg Proj sð Þ ^ w ¼ StepSYNC NCL sð Þ ^ v ¼ StepSYNC SPEC uð Þ½ �
) Reg Proj wð Þ ¼ vg:

After verifying function equivalence, the rail0 outputs of each C/L stage must
also be checked to ensure safety, as detailed in Section 15.3.2. Note that for
sequential circuits, which include datapath feedback, the first invariant check
method that checks the entire circuit simultaneously won’t work; hence, the second,
much faster method that performs the invariant check independently for each stage
is utilized.

s

w

u

v

StepSYNC_NCL StepSYNC_SPEC

Implementation Specification

Figure 15.10 Depiction of proof obligation to check equivalence of NCL-SYNC
and SPEC-SYNC netlists
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15.4.2 Liveness
Figure 15.11 shows the handshaking connections for the 4 þ 2 � 2 NCL MAC.
Full-word completion is used by the input register, Reg 1, to generate a single Ko.
Full-word completion is also utilized between Reg 1 and Reg 2, since bit-wise
completion would have the same delay and require more area. Partial bit-wise
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Figure 15.11 Handshaking connections for the 4 þ 2 � 2 NCL MAC
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completion is utilized between Reg 2 and Reg 3, since full bit-wise completion
would have the same delay and require more area. Bit-wise completion is utilized
between Reg 3 and Reg 4, and for the output register, Reg 4. The handshaking
check for sequential NCL circuits is essentially the same as that for C/L NCL
circuits, described in Section 15.3.3. The only addition is calculating a feedback
register’s level, which should be assigned the same level as other registers that
share its Ki input signal, or one level more than its previous register, if its Ki input
signal is not shared with another register already assigned a level. For the MAC
example in Figure 15.11, feedback registers 5–8 would be assigned level 1, since
they share their Ki input with the other level 1 registers, 1–4; and feedback register 15
would be assigned level 2, since it shares its Ki input with other level 2 registers,
9–14. Figure 15.12 shows the reg_fanin and ko_fanout lists for each register in the
4 þ 2 � 2 NCL MAC example.

After verifying handshaking correctness, each stage’s C/L must also be
checked for input-completeness and observability, utilizing the methods detailed in
Sections 15.3.4 and 15.3.5, respectively, to guarantee liveness.

1: reg_fanin: 0                          ko_fanout: 0
2: reg_fanin: 0                            ko_fanout: 0
3: reg_fanin: 0                          ko_fanout: 0
4: reg_fanin: 0 ko_fanout: 0
5: reg_fanin: [20]                   ko_fanout: [20]
6: reg_fanin: [21]                    ko_fanout: [21]
7: reg_fanin: [22]                      ko_fanout: [22]
8: reg_fanin: [23]             ko_fanout: [23]
9: reg_fanin: [1, 3, 5]               ko_fanout: [1, 2, 3, 4, 5, 6, 7, 8]

10: reg_fanin: [1, 3, 5]             ko_fanout: [1, 2, 3, 4, 5, 6, 7, 8]
11: reg_fanin: [1, 2, 3, 4, 6]         ko_fanout: [1, 2, 3, 4, 5, 6, 7, 8]
12: reg_fanin: [1, 2, 3, 4, 6]        ko_fanout: [1, 2, 3, 4, 5, 6, 7, 8]
13: reg_fanin: [1, 2, 3, 4, 7]          ko_fanout: [1, 2, 3, 4, 5, 6, 7, 8]
14: reg_fanin: [1, 2, 3, 4, 7]       ko_fanout: [1, 2, 3, 4, 5, 6, 7, 8]
15: reg_fanin: [8]                     ko_fanout: [1, 2, 3, 4, 5, 6, 7, 8]
16: reg_fanin: [9]                        ko_fanout: [9]
17: reg_fanin: [10, 11]                 ko_fanout: [10, 11, 12, 13, 14, 15] 
18: reg_fanin: [10, 11, 12, 13]   ko_fanout: [10, 11, 12, 13, 14, 15] 
19: reg_fanin: [10, 11, 12, 13, 14, 15]      ko_fanout: [10, 11, 12, 13, 14, 15] 
20: reg_fanin: [16]                    ko_fanout: [16]
21: reg_fanin: [17]     ko_fanout: [17]
22: reg_fanin: [18]          ko_fanout: [18]
23: reg_fanin: [19]            ko_fanout: [19]

Figure 15.12 reg_fanin and ko_fanout lists for the 4 þ 2 � 2 NCL MAC
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15.4.3 Sequential NCL circuit results
The verification results for sequential NCL circuits, including functional equiva-
lence and handshaking checks, are shown in Table 15.6. Since the invariant, input-
completeness, and observability checks are exactly the same for combinational and
sequential NCL circuits, these results are not included in Table 15.6. Test circuits
include multiple MAC units and one ISCAS-89 benchmark, s27 [22]. The MAC
units are represented as A þ M � N, where A, M, and N represent the length of the
accumulator, multiplicand, and multiplier, respectively. The same types of bugs
were tested for the MACs as tested for the multipliers, and the same machine was
used to perform the sequential circuit verification, both as described at the end of
Section 15.3.3. Z3 reported all functional bugs along with a counter example, and
our handshaking check tool identified and reported the location of all inserted
completion logic bugs.

15.5 Conclusions and future work

This chapter presents a novel methodology for formally verifying the correctness
(both safety and liveness) of combinational and sequential NCL circuits. The
approach includes methods for ensuring handshaking correctness, and functional
correctness of both rail1 and rail0 outputs, and methods to ensure that NCL C/L
circuits, or pipeline stages, are both input-complete and observable, which is required
for correct operation under all timing scenarios. The presented methodology is
applicable AQ12to both NCL circuits designed using only NCL gates with hysteresis and
relaxed NCL circuits, where NCL gates with hysteresis are replaced with their
Boolean equivalent gate when hysteresis is not required for input-completeness
and/or observability.

The framework of this verification methodology can also be applied to other
QDI paradigms, such as MTNCL AQ13and PCHB. For MTNCL, the functional checking

Table 15.6 Verification results for sequential NCL circuits

Circuits Functional check (s) Handshaking check (s) Total time (s)

ISCAS s27 0.01 0.0019 0.0119
4 þ 2 � 2 MAC 0.01 0.0045 0.0145
8 þ 4 � 4 MAC 0.05 0.7852 0.8352
12 þ 6 � 6 MAC 0.77 2.331 3.101
16 þ 8 � 8 MAC 47.55 21.7411 69.2911
20 þ 10 � 10 MAC 2,643.99 163.6463 2,807.6363
20 þ 10 � 10 MAC-B1 0.11 (B) 163.6463 163.7563
20 þ 10 � 10 MAC-B2 0.13 (B) 163.6463 163.7763
20 þ 10 � 10 MAC-B3 2,643.99 169.8422 (B) 2,813.8322
20 þ 10 � 10 MAC-B4 2,643.99 159.3253 (B) 2,803.3153
20 þ 10 � 10 MAC-B5 0.20 (B) 163.6463 163.8463
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and invariant checking methods are essentially the same as for NCL, but the
handshaking check is slightly different [23]. Additionally, MTNCL circuits do not
require input-completeness or observability, so these checks are not needed. For
PCHB, the handshaking check is essentially the same as for NCL, but the func-
tional checking method is a bit different [11]. Since PCHB gates consist of dual-rail
input(s) and output(s), invariant, input-completeness, and observability checking
are not required, as these are ensured within the primitive PCHB gates themselves.
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