
Hardware Trojan Design and Detection in
Asynchronous NCL Circuits

Kushal K. Ponugoti
Electrical & Computer Engineering

North Dakota State University
Fargo, ND, USA

kushalkumar.ponugoti@ndsu.edu

Sudarshan K. Srinivasan
Electrical & Computer Engineering

North Dakota State University
Fargo, ND, USA

sudarshan.srinivasan@ndsu.edu

Scott C. Smith
Electrical Engineering & Computer Science

Texas A&M University Kingsville
Kingsville, TX, USA
scott.smith@tamuk.edu

Abstract—Hardware Trojans that degrade performance,
change functionality, leak information, or halt service, have been
problematic in synchronous circuits. Asynchronous circuits are
gaining popularity due to their lower power consumption, and
better immunity against PVT (process, voltage, temperature)
variations. In this paper, we show some designs to realize
hardware Trojans in NULL Convention Logic (NCL), which
is a Quasi-Delay Insensitive (QDI) asynchronous digital circuit
paradigm. We also present a formal verification methodology
to detect such Trojans, and validate our technique on an RSA
decryption circuit.

Index Terms—Hardware Trojans, Asynchronous Circuits,
NULL Convention Logic (NCL), Formal Verification

I. INTRODUCTION

Use of third-party Intellectual Property (IP) in modern
electronic design has become a serious security issue, as the IP
may be compromised by inserted hardware Trojans, which are
a malicious and intentional change in the circuit design to alter
functionality. The taxonomy of hardware Trojans, benchmark
circuits, and detection methodologies have been extensively
described in [1]–[4] for synchronous circuits, where a global
clock controls the flow of data. However, distributing a single
clock signal to the entire circuit is becoming problematic due
to clock skew, large area requirements, and excess power
dissipation for the clock tree and associated clock drivers [5].

Asynchronous design is a viable alternative, where the
global clock is replaced by local handshaking signals. NULL
Convention Logic (NCL) [6] is a popular Quasi-Delay In-
sensitive (QDI) asynchronous design paradigm that has been
utilized in a number of commercial applications. NCL uti-
lizes multi-rail logic, such as dual-rail, along with a 4-phase
handshaking protocol to achieve delay-insensitivity. A dual-
rail signal, D, consists of two wires, D0 and D1, which may
assume any value from the set DATA0, DATA1, NULL. The
DATA0 state (D0 = 1 and D1 = 0) corresponds to a Boolean
logic 0, the DATA1 state (D0 = 0 and D1 = 1) corresponds
to a Boolean logic 1, and the NULL state (D0 = 0 and D1

= 0) corresponds to the empty set meaning that the value of
D is not yet available. The two rails are mutually exclusive,
such that both rails can never be asserted simultaneously; this
state is defined as an ILLEGAL state, and will not occur in
a properly operating circuit. Hence, when NCL circuits are
verified and tested, illegal inputs are not typically considered.

The major contributions of this paper are: 1) we show that
it is possible to design NCL hardware Trojans that are only
triggered by inputting illegal values, which leads to a new class
of Trojans that can impact QDI paradigms that employ dual-
rail or other multi-rail encodings; and 2) we propose a formal
verification method to detect these illegal Trojans, which is
tested on an RSA decryption circuit.

The rest of the paper is organized as follows. Background
on hardware Trojans and NCL circuits is described in Section
II. Section III discusses related work on hardware Trojans in
asynchronous circuits, and detection methods for such Trojans.
Section IV describes a few examples of how illegal state
NCL Trojans can be designed. Section V provides a formal
verification technique to detect illegal state NCL Trojans.
Verification results are presented in Section VI; and Section
VII discusses conclusions and future work.

II. BACKGROUND

A. Hardware Trojans

A hardware Trojan typically consists of a trigger circuit
and a payload circuit. The Trojan can be designed to be
triggered by external input combinations, rare internal states,
or a combination of both. When the Trojan trigger circuit is
activated, it invokes the payload circuit that can be designed
to degrade system performance, leak security sensitive data,
change intended functionality, or halt system operation. Much
effort goes into the design of the Trojan so that it is not
detected during testing. Therefore, formal verification methods
need to be specifically designed to target Trojan detection.

B. NCL Background

As mentioned earlier, NCL uses multi-rail encoding, such as
dual-rail. NCL circuits are implemented using 27 basic gates
with hysteresis, such that after the gate output is asserted, it is
only de-asserted after all inputs are de-asserted [5]. 24 of the
NCL gates are threshold gates, denoted as THmnWw1w2, . . . ,
wR, where n is the number of inputs; m is the gate’s threshold;
w1w2, . . . , wR, each > 1 and ≤ m, are optional integer weights
of input1, input2, . . . , inputR, respectively; and the gate output
is asserted whenever the sum of the asserted inputs meets
or exceeds the gate’s threshold value. Each of the n inputs
is connected to the rounded portion of the gate; the output

978-1-7281-6044-3/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on April 12,2021 at 13:47:00 UTC from IEEE Xplore. Restrictions apply.

emanates from the pointed end of the gate; and the gate’s
threshold value, m, is written inside of the gate. An input with
weight WR is depicted by connecting that input to the gate WR

times. NCL systems consists of QDI registers at both the input
and output, and may include additional internal registers. Two
adjacent register stages interact through handshaking to ensure
that two adjacent DATA wavefronts are always separated by a
NULL wavefront, to prevent the subsequent DATA wavefront
from overwriting the previous DATA wavefront until that has
been consumed.

NCL circuits must satisfy two properties: Input-
completeness and Observability [5]. Input-completeness
requires that all outputs of a combinational circuit may
not transition from NULL to DATA until all inputs have
transitioned from NULL to DATA, and that all outputs
of a combinational circuit may not transition from DATA
to NULL until all inputs have transitioned from DATA to
NULL. In circuits with multiple outputs, some of the outputs
may transition without having a complete input set present,
as long as all outputs cannot transition before all inputs are
available. Take for example the NCL AND function in Fig. 1.
The version in Fig. 1a is not input-complete, as output Z
will transition to DATA0 if either input is DATA0, even if
the other input is NULL. However, the version in Fig. 1b is
input-complete, as Z can only transition to DATA when both
inputs are DATA.

Observability requires that every gate that transitions is
necessary to transition at least one output. Every gate in the
circuit must be observable in order for the circuit to be QDI,
as an unobservable gate may cause the circuit to malfunction.
Fig. 2a shows an unobservable XOR function, since when
both X and Y are DATA0, the TH12 gate is asserted, but
does not take part in asserting the output, Z = DATA0. The
XOR function in Fig. 2b is observable because the assertion
of either internal gate guarantees that the respective output rail
is asserted, since the weight of that input, 2, is the same as the
output gate threshold. Note that the Fig. 2b XOR function is
not optimal, as it can be implemented using only 2 gates [5].

Ensuring input-completeness and observability of the NULL
to DATA transition guarantees input-completeness and observ-
ability of the DATA to NULL transition when considering
NCL circuits comprised solely of NCL gates with hysteresis;
however, for relaxed NCL circuits that also include Boolean
gates, input-completeness and observability of the DATA to
NULL transition must also be checked [7].

Fig. 1: NCL AND function: (a) Input-Incomplete (b) Input-complete [5]

Fig. 2: NCL XOR function: (a) Unobservable (b) Observable [5]

III. RELATED WORK

Few studies that attempt to design and detect hardware
Trojans in asynchronous circuits have been reported in the
literature. Inaba et al. [8] demonstrate hardware Trojans in
bounded-delay MOUSETRAP-based asynchronous circuits,
and utilize deep learning techniques to detect them. Four types
of hardware Trojans were inserted in asynchronous FIFO-
buffers by Hasan et al. [9], where the system is comprised
of a memory array and a flip-flop interface between read and
write controllers, each working on a different clock frequency.
However, neither of these works are applicable to QDI circuits.
To the best of our knowledge, this paper is the first attempt
to realize hardware Trojans in QDI circuits by exploiting the
illegal state.

IV. NCL ILLEGAL TROJAN DESIGN

In this section, we show how hardware Trojans can be
realized in NCL circuits by utilizing the illegal state to leak
information. We first show how an illegal value can flow
through an NCL circuit, using adders as example. Then, a few
configurations of information leaking Trojans triggered by a
propagated illegal value are presented.

Consider the input-complete and observable NCL half-adder
circuit shown in Fig. 3a. The dual-rail sum output is given
by S0 = X0Y0 + X1Y1 and S1 = X0Y1 + X1Y0. When X
and Y are valid DATA values, the sum, S, and carry, Cout,
outputs are valid DATA values. However, when either X or
Y, or both, are illegal, S becomes illegal, and Cout may or
may not be illegal. For example, when Y is DATA0 and X
is illegal, Cout is DATA0 and S is illegal. Similar behavior
can be observed in the full adder circuit shown in Fig. 3b,
where S becomes illegal when any or all inputs are illegal.
Processors and data encryption/decryption circuits typically

Fig. 3: (a) NCL half-adder, (b) NCL full-adder [5]

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on April 12,2021 at 13:47:00 UTC from IEEE Xplore. Restrictions apply.

utilize multipliers, which consist of cascaded half and full
adders. Security critical information moves through various
circuit components, and an attacker can utilize propagated
illegal values to leak information, as described next.

The circuits in Fig. 4 show some example NCL Trojans that
can be employed to leak data. All three circuits utilize Boolean
multiplexers to pass the normal non-secret information, B, to
output, Bp, under the regular operating scenario, but pass secret
information, K, only when the trigger, S, becomes illegal. For
Fig. 4a, the TH22 gate, which could also be a Boolean AND
gate, is never asserted when S is NULL or DATA, such that
Bp always equals B. However, when S is illegal, Bp becomes
secret value K instead of B, such that it can be leaked. Similar
functionality can be observed in Fig. 4b by replacing the TH22
gate with a NAND gate, and swapping MUX inputs B and
K. In this case, the NAND gate is always asserted when S
is NULL or DATA, such that Bp always equals B. However,
when S is illegal, Bp equals K instead. Another configuration
is shown in Fig. 4c, where the gate responsible for generating
the select signal for the multiplexers has been replaced by
additional multiplexers. The behavior of this circuit is similar
to the other two circuits. Like Fig. 4a and 4b, Bp always equals
B, unless S is illegal, in which case Bp equals K.

V. DETECTION METHODOLOGY

As mentioned in Section II, NCL circuits must be verified
for input-completeness and observability to ensure correct
operation [7]. Luckily, these properties implicitly add a layer
of security that makes it more difficult to design NCL hardware
Trojans compared to synchronous circuits. Input-completeness
verification does not detect any of the Trojan circuits shown
in Fig. 4, as all three circuits act the same as what they
replace (i.e., 2 wires that pass the 2 rails of B), as long
as S in not illegal. However, observability verification flags
the circuits shown in Figs. 4b and 4c as unobservable. For
Fig. 4b, the NAND gate output is always 1 when S is DATA
or NULL. Hence, when the overall circuit inputs are all DATA,
the NAND gate is asserted and the overall circuit outputs
all become DATA. Next, when all inputs change back to
NULL, all circuit outputs transition back to NULL, but the
NAND gate remains asserted; therefore, the NAND gate is
flagged as unobservable. For Fig. 4c, the bottom left 2 MUXes

Fig. 4: NCL Trojans (a) using TH22 or AND gate, (b) using NAND gate,
(c) using 6 multiplexers

controlled by S1 are unobservable. For example, assume that
S and B are both DATA1, in which case Bp is DATA1, as
passed through the top left MUX pair controlled by S0. In
this case, the bottom left MUX is also asserted, but is not
needed to assert Bp; hence, this MUX will be flagged as
unobservable. On the other hand, the TH22 gate (or AND
gate) in Fig. 4a, can never be asserted when S is valid DATA or
NULL, such that observability verification skips this gate, and
the circuit passes the observability check in [7]. Therefore, an
additional verification method is needed to detect this Trojan,
as discussed below.

If a gate can never be asserted when all circuit inputs are
DATA, but can be asserted if one or more inputs are illegal, this
gate should be flagged as a potential hardware Trojan. Below
are the proof obligations (POs) used to detect this scenario,
which must both be checked for each gate in the circuit, similar
to how [7] checks each gate for observability.

Without loss of generality, assume an NCL circuit has n
dual-rail inputs, i1, i2, . . . , in, and k gates, with each gate output
represented as g1, g2, . . . , gk. PO1 states that there is some
combination of NULL and DATA circuit inputs that asserts
gatek. PO2 states that there is some combination of NULL,
DATA, and illegal circuit inputs that asserts gatek. If PO1 is
false, but PO2 is true, then gatek is flagged as a potential Trojan
(i.e., gatek isn’t asserted when inputs are only NULL/DATA,
but can be asserted when 1 or more inputs are illegal).
PO1: 〈∀ i1, i2, . . . , in ∈ {NULL, DATA0, DATA1}::{gk = 1}〉
PO2: 〈∀ i1, i2, . . . , in ∈ {NULL, DATA0, DATA1, Illegal}

:: {gk = 1}〉

VI. RESULTS

Fig. 5 shows a sample NCL RSA decryption [10] circuit,
where n and e are output as part of the public key, but d is the
private key exponent that must be kept secret. The inputs are
a bit (n/e Select) to select whether n or e should be output on
the Public Key channel, and the encrypted padded message, c,
to be decoded. The external interface also includes the NCL
handshaking signals, KiPK, KoPK, and KoC. Note that the n,
e, and d registers utilize read ports [11], since they are not
loaded with new data every cycle; and for circuit simplicity,
the d and e registers are shown padded with MSB DATA0s so
that they contain the same number of bits as n. The circuit,
corresponding to Node A, operates as follows. If Node B wants
to send a secure message to Node A, Node A transmits n and e
over an unsecured channel, such that they are publicly known.
Node B uses n and e to encrypt its plaintext message, M,
resulting in an encrypted message, c. Node B then transmits
its encrypted message, c, over an unsecured channel to Node
A, which in turn decrypts the message using public key, n, and
its private key exponent, d, which is only known to Node A.
Without knowing d, the encrypted message cannot be decoded.

This circuit also includes the Fig. 4a, hardware Trojan,
shown in red, which causes the private key exponent, d, to be
leaked on the Public Key channel when triggered by sending
an encrypted message with bit(X) as an illegal value, and
selecting e to be output via n/e Select. VHDL simulation of

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on April 12,2021 at 13:47:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: NCL RSA decryption circuit with hardware Trojan inserted to leak private data

this circuit confirmed correct operation when all inputs were
some combination of NULL and DATA, and that d was leaked
in the circumstance described above. The Public Key output is
input-complete with respect to (wrt) n, e, and n/e Select; and M
is input-complete wrt d and c. Therefore, the circuit as a whole
is input-complete. As detailed in Section V, insertion of the
Fig. 4a Trojan does not compromise observability; therefore,
the circuit as a whole is both input-complete and observable,
and passes both of these checks described in [7]. This circuit
also passes the functional verification and handshaking checks
described in [7], such that it is confirmed as being properly
verified. However, as described above and confirmed via
VHDL simulation, the circuit is not correct due to insertion
of the hardware Trojan.

The POs presented in Section V were automatically encoded
for the example NCL RSA circuit, and checked using the Z3
SMT Solver [12], resulting in the red TH22 gate in Fig. 5
being flagged as a potential Trojan.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes how hardware Trojans can be realized
in asynchronous NCL circuits using an illegal value as the
trigger mechanism. While the existing NCL observability
verification methodology [7] was able to detect two of the
three presented Trojans, one variation escaped detection using
existing NCL verification approaches. Hence, we proposed an
additional verification methodology that detects this previously
undetectable hardware Trojan.

Hardware Trojans can also be inserted into other types of
asynchronous circuits, such as MTNCL [13] and PCHB [14].
Since MTNCL circuits are not required to be input-complete
or observable, detecting MTNCL Trojans is expected to be
more difficult. The Fig. 4b Trojan can be easily detected in
MTNCL circuits by replacing {gk = 1} with {gk = 0} in
both PO1 and PO2; however, the Fig. 4c Trojan would not
be as easily detected in MTNCL circuits. As future work, we
plan to explore Trojan insertion and detection in MTNCL and
PCHB circuits, as well as investigate how several other types
of Trojans, commonly found in synchronous circuits, could be
adapted to asynchronous circuits.

VIII. ACKNOWLEDGMENT

This paper is based upon work supported by the National
Science Foundation under Grant No. CCF-1717420.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design Test of Computers, vol. 27, no. 1,
pp. 10–25, 2010.

[2] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85–102,
2017.

[3] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
Threats and emerging solutions,” in 2009 IEEE International high level
design validation and test workshop. IEEE, 2009, pp. 166–171.

[4] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan
attacks: Threat analysis and countermeasures,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1229–1247, 2014.

[5] S. C. Smith and J. Di, “Designing asynchronous circuits using null
convention logic (ncl),” Synthesis Lectures on Digital Circuits and
Systems, vol. 4, no. 1, pp. 1–96, 2009.

[6] K. M. Fant and S. A. Brandt, “Null convention logic/sup tm/: a
complete and consistent logic for asynchronous digital circuit synthesis,”
in Proceedings of International Conference on Application Specific
Systems, Architectures and Processors: ASAP ’96, 1996, pp. 261–273.

[7] A. Sakib, S. Le, S. C. Smith, and S. Srinivasan, “Formal verification of
ncl circuits,” Asynchronous Circuit Applications, p. 309, 2020.

[8] K. Inaba, T. Yoneda, T. Kanamoto, A. Kurokawa, and M. Imai,
“Hardware trojan insertion and detection in asynchronous circuits,” in
2019 25th IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC). IEEE, 2019, pp. 134–143.

[9] S. R. Hasan, S. F. Mossa, C. Perez, and F. Awwad, “Hardware trojans
in asynchronous fifo-buffers: From clock domain crossing perspective,”
in 2015 IEEE 58th International Midwest Symposium on Circuits and
Systems (MWSCAS), 2015, pp. 1–4.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[11] R. B. Reese, S. C. Smith, and M. A. Thornton, “Uncle - an rtl approach
to asynchronous design,” in 2012 IEEE 18th International Symposium
on Asynchronous Circuits and Systems, 2012, pp. 65–72.

[12] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[13] L. Zhou, R. Parameswaran, F. A. Parsan, S. C. Smith, and J. Di,
“Multi-threshold null convention logic (mtncl): An ultra-low power
asynchronous circuit design methodology,” Journal of Low Power Elec-
tronics and Applications, vol. 5, no. 2, pp. 81–100, 2015.

[14] A. J. Martin and M. Nystrom, “Asynchronous techniques for system-on-
chip design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120,
2006.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on April 12,2021 at 13:47:00 UTC from IEEE Xplore. Restrictions apply.

