Increasing Labelings, Generalized Promotion, and Rowmotion

Kevin Dilks, Jessica Striker, Corey Vorland

North Dakota State University

January 12, 2018
Outline

1. Background
2. Previous Results
3. Generalized Increasing Labelings
1. Background
2. Previous Results
3. Generalized Increasing Labelings
Increasing Tableaux

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: An increasing tableau T of shape $\lambda = (4, 4, 4, 2)$.

Arise in equivariant K-theory of the Grassmanian.
K-Promotion

$T = \begin{array}{cccc}
1 & 2 & 4 & 6 \\
4 & 5 & 6 & 7 \\
\end{array}$

Delete 1’s

$\begin{array}{cccc}
2 & 4 & 6 \\
4 & 5 & 6 & 7 \\
\end{array}$

$\begin{array}{cccc}
2 & 4 & 6 \\
4 & 5 & 6 & 7 \\
\end{array}$

Fill and decrement

$\begin{array}{cccc}
1 & 3 & 5 & 6 \\
3 & 4 & 6 & 7 \\
\end{array}$

$= K\text{-Pro}(T)$
Order of K-promotion

- Order of K-promotion on rectangles $a \times b$ is always small multiple of largest possible label q.
- Hits it on the nose for special cases ($a = 2$, $q = a + b$, standard tableaux).
Rowmotion

Definition

Let *rowmotion* be the action on $J(P)$ (set of order ideals of P) that takes in an order ideal I, and returns the order ideal generated by the minimal elements of $J(P)$.
Rowmotion

Definition

Let \textit{rowmotion} be the action on $J(P)$ (set of order ideals of P) that takes in an order ideal I, and returns the order ideal generated by the minimal elements of $J(P)$.
Definition

Let *rowmotion* be the action on $J(P)$ (set of order ideals of P) that takes in an order ideal I, and returns the order ideal generated by the minimal elements of $J(P)$.
Definition

Let *rowmotion* be the action on \(J(P) \) (set of order ideals of \(P \)) that takes in an order ideal \(I \), and returns the order ideal generated by the minimal elements of \(J(P) \).
Definition

Let *rowmotion* be the action on $J(P)$ (set of order ideals of P) that takes in an order ideal I, and returns the order ideal generated by the minimal elements of $J(P)$.
Definition

Let \textit{rowmotion} be the action on \(J(P) \) (set of order ideals of \(P \)) that takes in an order ideal \(I \), and returns the order ideal generated by the minimal elements of \(J(P) \).
Let \textit{rowmotion} be the action on $J(P)$ (set of order ideals of P) that takes in an order ideal I, and returns the order ideal generated by the minimal elements of $J(P)$.
Toggle Group

Definition
For each element $e \in P$ define its **toggle** $t_e : J(P) \rightarrow J(P)$ as follows.

$$t_e(X) = \begin{cases}
X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in J(P) \\
X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in J(P) \\
X & \text{otherwise}
\end{cases}$$

Note: t_e, t_f commute whenever neither e nor f covers the other.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Theorem (Cameron–Fon-der-Flaass)

Rowmotion is the same as toggling each element once, in the order of a linear extension.
Order of Rowmotion

- Rowmotion on order ideals in $a \times b \times c$.
- When $c = 1, 2(, 3?)$, order is exactly $a + b + c - 1$.
- In general, orbit sizes appear to be small multiples of $a + b + c - 1$.
Outline

1. Background
2. Previous Results
3. Generalized Increasing Labelings
Bijection Between Increasing Tableaux and Order Ideals

Theorem (Dilks, Pechenik, Striker)

Bijective between order ideals in $[a] \times [b] \times [c]$ *and increasing labelings of* $a \times b$ *with max entry* $a + b + c - 1$.
Bijection Between Increasing Tableaux and Order Ideals

$I = \begin{array}{cccc}
0 & 0 & 1 & 3 \\
1 & 2 & 2 & 3 \\
2 & 3 & 3 & 4 \\
3 & 4 & 4 & 4 \\
\end{array}$

Project to bottom face

Rotate 180°

Add $1+\text{rank}$

$\begin{array}{cccc}
4 & 4 & 4 & 3 \\
4 & 3 & 3 & 2 \\
3 & 2 & 2 & 1 \\
3 & 1 & 0 & 0 \\
\end{array}$

$= \psi_3(I)$
Theorem (Dilks, Pechenik, Striker)

\(K \)-promotion is a series of local involutions.
Theorem (Dilks, Pechenik, Striker)

K-promotion is a series of local involutions.
Equivariant Bijection

\[x + y - z = 3 \]
\[x + y - z = 2 \]
\[x + y - z = 1 \]
\[x + y - z = 0 \]
\[x + y - z = -1 \]
\[x + y - z = -2 \]
Hyperplane Promotion is Conjugate to Rowmotion

Theorem (Dilks, Pechenik, Striker)

Let P be a poset with an order and rank preserving map $\pi : P \rightarrow \mathbb{Z}^n$, and let $v = (v_1, v_2, v_3, \ldots, v_n)$, where $v_j \in \{ \pm 1 \}$.

Let $T^i_{\pi, v}$ be the product of toggles t_x for all elements x of P that lie on the affine hyperplane $\langle \pi(x), v \rangle = i$.

Then $\text{Pro}_{\pi, v} = \ldots T^{-2}_{\pi, v} T^{-1}_{\pi, v} T^0_{\pi, v} T^1_{\pi, v} T^2_{\pi, v} \ldots$ is conjugate to rowmotion.
Punchline

\(K \)-promotion on increasing labelings of \(a \times b \) with max entry \(a + b + c - 1 \)

has the same orbit structure as

rowmotion on order ideals in \(a \times b \times c \).
Outline

1. Background
2. Previous Results
3. Generalized Increasing Labelings
Motivation

How much do these methods generalize.

- Non-square increasing tableaux?
- Non-ranked posets?
Increasing Labeling

Definition

An *increasing labeling* of P is a function $f : P \rightarrow \mathbb{Z}$ such that $p_1 <_P p_2$ implies $f(p_1) < f(p_2)$.

Definition

For labeling function $R : P \mapsto \mathcal{P}(\mathbb{Z})$, let $\text{Inc}^R(P)$ be the set of increasing labelings of P such that for all $p \in P$, $f(p) \in R(p)$.
Example

Generalized Increasing Labelings

- **a** \{1,4\}
- **b** \{2,3,5\}
- **c** \{2,4,5\}
- **d** \{3,4,5,6\}
- **e** \{4,6,7,9\}

Kevin Dilks, Jessica Striker, Corey Vorland

Increasing Labelings, Generalized Promotion, and Rowmotion
Key Idea

- \(\text{Inc}^R(P) \) can be partially ordered by element-wise comparison.
- \(\text{Inc}^R(P) \) is a distributive lattice (meet and join are taking element-wise min/max)
- Birkhoff FTFDL (Fundamental Theorem of Finite Distributive Lattices)
- Find join irreducibles and their relative order (\(\Gamma(P, R) \)).
Generalized Increasing Labelings

{1,4} {2,3,5} {4,6,7,9}

{2,4,5} {3,4,5,6}

Kevin Dilks, Jessica Striker, Corey Vorland

Increasing Labelings, Generalized Promotion, and Rowmotion
Special Case: Bounded max entry

Largest entry of 6

a
{1,2,3}

b
{2,3,4,5}

c
{2,3,4}

d
{3,4,5}

e
{4,5,6}

Kevin Dilks, Jessica Striker, Corey Vorland
Increasing Labelings, Generalized Promotion, and Rowmotion
Generalized Bender-Knuth involutions for arbitrary R:

- If a label is currently i, and you can increment it to next allowable label (and stay in $\text{Inc}^R(P)$), then do it.
- If you can decrement a label to become i (and stay in $\text{Inc}^R(P)$), then do it.
- Otherwise, do nothing.

Increasing tableaux promotion:
$\text{IncPro} = \ldots \circ \rho_2 \circ \rho_1$.

Kevin Dilks, Jessica Striker, Corey Vorland
- Generalizes promotion on linear extensions.
- Generalizes K-promotion on increasing tableaux.
- In case with largest global entry, can equivalently be described in terms of box sliding.
Toggle Promotion

Definition

Toggle order a function $H : P \to \mathbb{Z}$ where $p_1 \prec p_2 \implies H(p_1) \neq H(p_2)$.

Definition

T_H^i is the product of all t_p for $p \in P$ such that $H(p) = i$.

Toggle-promotion (wrt H), called TogPro$_H$, is the toggle group action given by

$$\ldots T_H^2 T_H^1 T_H^0 T_H^{-1} T_H^{-2} \ldots$$
Bijection is equivariant

For $\Gamma(P, R)$, a natural toggle order is given by $H((p, k)) = k$.

Theorem (Dilks, Striker, Vorland)

The map between $\text{Inc}^R(P)$ and $J(\Gamma(P, R))$ equivariantly takes IncPro to TogPro_H.
\[\rho_i \text{ is } T^i_H \]
\(\rho_i \) is \(T^i_H \)

Graph showing increasing labelings and relations.
\[\rho_i \text{ is } T_H^i \]
\(\rho_i \) is \(T^i_H \)
ρ_i is T^i_H
\(\rho_i \) is \(T^i_H \)
ρ_i is T^i_H
ρ_i is T^i_H
ρ_i is T^i_H
ρ_i is T^i_H.
Column Toggle Order

Definition

We say that a function $H : P \rightarrow \mathbb{Z}$ is a column toggle order if whenever $p_1 \preceq p_2$ in P, then $H(p_1) = H(p_2) \pm 1$.

Theorem (Dilks, Striker, Vorland)

When H is a column toggle order, then TogPro_H is conjugate to rowmotion.
Theorem (Dilks, Striker, Vorland)

If R is a restriction function for P that consists of intervals (including global max entry), then the map $H : \Gamma(P, R) \to \mathbb{Z}$ given by $(p, k) \mapsto k$ is a column toggle order.

Therefore, rowmotion on $\Gamma(P, R)$ is conjugate to the corresponding toggle promotion.

Theorem

If P_1 and P_2 are ranked posets, then $H : P_1 \times P_2 : \to \mathbb{Z}$ given by $H((p_1, p_2)) = \text{rk}_{P_1}(p_1) - \text{rk}_{P_2}(p_2)$ is a column toggle order.
Big result

Theorem (Dilks, Striker, Vorland)

Increasing promotion on $\text{Inc}^R(P)$ *is conjugate to rowmotion on* $\Gamma(P, R)$ *when* R *consists of intervals.*
Thanks!