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My area of research is commutative algebra, particularly the research of multiplicity, in-

tegral closure and reduction of ideals. The concept of multiplicity originated as a geometric

invariant. Given a field k and polynomials f1, ..., fk in n variables (elements of the ring

k[x1, ..., xn]) let (a1, ..., an be a point in kn such that each fi satisfies fi(a1, ..., an) = 0. Let

R be the ring (k[x1, ..., xn])/(f1, ..., fn) and m = (x1 − a1, ..., xn − an). Consider the length

λ(R/mn). This is becomes polynomial for large values of n of degree d, which is equal to the

dimension of the ring R. The degree d coefficient is e(R)
d!

where e(R) is the multiplicity at that

point. My reseach is focused on studying generalizations of this multiplicity to determine

what properties these may characterize.

For a commutative ring R and an ideal I, the integral closure of I is defined to be the

ideal

I =
{
r ∈ R | rn + a1r

n−1 + ...+ an−1r + an = 0 for some n and for ai ∈ I i
}
.

For I ⊆ J ideals in R, I is said to be a reduction of J if IJn = Jn+1 for some n. Reduction

ideals were introduced by Northcott and Rees as a tool to study the integral closure of an

ideal. We have the following relation between integral closure and reductions.

Theorem 1. Let R be a commutative noetherian ring and I ⊆ J ideals. The following are

equivalent:

(1) I ⊆ J is a reduction;

(2) I = J ;

(3) J ⊆ I.

There are many algebraic objects that are of interest when studying the integral closure

of an ideal. The algebra R[It] =
∞⊕
n=0

Intn is called the Rees algebra and R[It, t−1] =
⊕
n∈Z

Intn



where In = R when n ≤ 0 is the extended Rees algebra. The associated graded ring is

defined by

GI(R) =
∞⊕
i=0

I i/I i+1 ∼= R[It]/IR[It] ∼= R[It, t−1]/(t−1).

If (R,m) is a local ring of dimension d and I is m-primary, then the lengths λ(I i/I i+1) are

finite for all i. The Hilbert function

h(n) =
n∑
i=0

λ(I i/I i+1)

is eventually a polynomial of degree d with rational coefficients. The leading coefficient of this

polynomialis given by
e(I)

d!
, where e(I) is an integer which is called the Samuel multiplicity

of I. It is fairly straightforward to prove that if I ⊆ J is a reduction, then e(I) = e(J).

In 1961, Rees proved the following theorem.

Theorem 2. [7, Theorem 11.3.1] Let (R,m) be a local ring and I ⊆ J be m-primary ideals.

If I is a reduction of J , then e(I) = e(J). Moreover, if R is formally equidimensional, then

the converse also holds.

The constraint that R be formally equidimensional is a rather weak assumption; it means

that all minimal prime ideals of the completion of R have the same dimension.

There have been many attempts to generalize Theorem 2 for ideals that are not m-primary,

a case in which the classical Samuel multiplicity is no longer defined. The analytic spread of

an ideal is defined by

`(I) = dim(GI(R)/mGI(R)).

It is known that `(I) is between ht(I) and dim(R). In the case that `(I) = dim(R), I is said

to have maximal analytic spread. In 1993, Achilles and Manaresi defined the j-multiplicity

for ideals of maximal analytic spread

j(I) = e(H0
m(GI(M))).

Further, it was shown that

j(I) =
∑

p∈AsshGI (R)(GI(R)/mGI(R))

e(GI(R)/p)λ((GI(R))p).



One can prove that if I is m-primary, then j(I) = e(I).

In 2001, Flenner and Manaresi proved the following theorems.

Theorem 3. [6, Lemma 3.2] Let (R,m) be a formally equidimensional local ring and I ⊆ J

ideals. If j(Ip) = j(Jp) for all p ∈ Spec(R) \ {m}, then j(I) ≥ j(J).

Theorem 4. [6, Theorem 3.3] Let (R,m) be a formally equidimensional local ring and I ⊆ J

ideals. Then the following are equivalent:

(1) I ⊆ J is a reduction;

(2) j(Ip) = j(Jp) for all p ∈ Spec(R);

(3) j(Ip) = j(Jp) for all p ∈
⋃
n

Ass(R/In)

McAdam [8] proved that the set Ass(R/In) is an ascending set of primes which eventually

stabilizes and that these primes are exactly the primes in which the analytic spread of Ip is

maximal. Further, he proved that this set of primes is finite. Thus the equality j(Ip) = j(Jp)

only needs to be checked at finitely many prime ideals. A better characterization would be

one that involves invariants that can be computed by considering only the ring R and not

all of its localizations.

Another generalization of the classical Samuel multiplicity comes from the bigraded ring

Gm(GI(R)) =
∞⊕
i=0

∞⊕
j=0

I imj + I i+1

I imj+1 + I i+1
.

The Hilbert function

h(u, v) =
u∑
i=0

v∑
j=0

λ
( I imj + I i+1

I imj+1 + I i+1

)
is polynomial for u, v � 0 of degree d = dimR. The degree d part of this polynomial is

given by ∑
k+n=d

ck(I)

k!n!
ukvn,

where ck(I) are integers. Originally defined by Achilles and Manaresi in [2], the integer ck(I)

is called the k-th generalized Hilbert-Samuel multiplicity. They also proved that c0(I) = j(I).

Further, the following was proved.



Theorem 5. [2, Theorem 2.3] Let (R,m) be a local ring of dimension d and I an ideal of

R. Denote ` = `(I) and q = dim(R/I). Then:

(1) ci(I) = 0 for i < d− ` or i > q;

(2) cd−`(I) =
∑

β e(mGI(R)β)e(GI(R)/β) where β runs through all the highest dimen-

sional associated primes of GI(R)/mGI(R) such that dim(GI(R)/β)+dim(GI(R)β) =

dimGI(R);

(3) cq(I) =
∑

p e(Ip)e(R/p) where p runs through all the highest dimensional associated

primes of R/I such that dim(R/p) + dimRp = dimR.

In 2001, Ciupercă proved the following.

Theorem 6. [3, Theorem 2.7] Let (R,m) be a local ring, I ⊆ J ideal. If I is a reduction of

J , then ci(I) = ci(J) for all i = 0, ..., d.

Several other proofs of this result were given later. See for example [9, Corollary 11.5].

My research has been motivated by finding a suitable converse of this theorem.

To do so, we begin by proving the following result that expresses each generalized multiplic-

ity ck(I,M) which is defined in the more general case of R-modules, as a linear combination

of certain local j-multiplicities.

Theorem 7. Let (R,m) be a local ring, M a finitely generated R-module of dimension d,

I ⊆ R an ideal with `M(I) = `, and denote

Λk = Λk(I,M) = {p | p ∈ Supp(M/IM), dim(R/p) = k, dim(R/p) + dimMp = dimM} .

Further, let {x2, ..., x`} be a sequence of elements of I such that xi is a superficial element for

(I, (M/(x2, ..., xi−1)M)p) for all p ∈ Supp(M/IM) such that dim((M/(x2, ..., xi−1)M)p) =

`(M/(x2,...,xi−1)M)p(IRp) ≥ 2.

Assume that the following condition is satisfied:

(∗) dimMp = dim(InMp) for all n ≥ 0 and for all p ∈ Supp(M/IM)

Then for all k=d− `,...,d we have

ck(I,M) =
∑
p∈Λk

c0(IRp, (M/(x2, ..., xd−k)M)p)e(R/p).



The technical assumption (∗) is very weak and is always satisfied when htM(I) > 0 or

whenever ci(I,M) 6= 0 for some i < d.

Again, note that the sum involved is finite by a result of McAdam [8], which states that

the only primes for which `(Ip) is maximal are in
⋃
n≥0 Ass(R/In and this is a finite set.

Therefore c0(Ip) is nonzero for finitely many primes. We start by showing this equality is

true for cq where q = dimM/IM. This is a module version of the Achilles and Manaresi

result (Theorem 5(3)). Then the condition (∗) allows us to replace M with InM without

significantly changing the multiplicity sequence, ck(I,M) = ck(I, I
nM) for k = 0, ..., d − 1.

Since depthI(I
nM) > 0 for n� 0, we can then find a superficial element which is a nonzero

divisor so that ck(I,M) = ck(I,M/xM) for k = 0, ..., d − 2. From this point we can use

induction on the dimension of the module M to finish the proof.

By the result of Flenner and Manaresi (Theorem 3) relating the local j-multiplicities and

reduction, I am able to prove a partial converse of Theorem 6:

Theorem 8. Let (R,m) be a local ring, M a finitely generated formally equidimensional

module, and I ⊆ J ideals with
⋃
n≥0 Ass(R/In) =

⋃
n≥0 Ass(R/Jn). Assume ck(I,M) =

ck(J,M) for all k ≤ d = dim(M). Then I is a reduction of (J,M).

In the future, I would like to investigate the following questions.

Question. Is the assumption
⋃
n≥0 Ass(R/In) =

⋃
n≥0 Ass(R/Jn) necessary in 8?

The previous question may be considerably difficult. However, in the case that dimR = 2,

the assumption is not necessary. This leads to the question:

Question. Are there some conditions on the ideals I and J and the ring R where the as-

sumption
⋃
n≥0 Ass(R/In) =

⋃
n≥0 Ass(R/Jn) is not necessary?

In considering the recent work of Jefferies and Montaño [5] and the relationship between

the j-multiplicity and the multiplicity sequence, I have considered the following question.

Question. Can the multiplicity sequence for a monomial ideal be calculated by considering

some volume?



Considering that c0(I) = j(I) = e(H0
m(GI(R)), I have considered the following question.

Question. Can the multiplicities ci(I,M) be calculated easier by considering the multiplicity

of some other module, such as a local cohomology module?
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