RESEARCH STATEMENT

THOMAS DUNN

My area of research is commutative algebra, particularly the research of multiplicity, integral closure and reduction of ideals. The concept of multiplicity originated as a geometric invariant. Given a field k and polynomials f_{1}, \ldots, f_{k} in n variables (elements of the ring $\left.k\left[x_{1}, \ldots, x_{n}\right]\right)$ let $\left(a_{1}, \ldots, a_{n}\right.$ be a point in k^{n} such that each f_{i} satisfies $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$. Let R be the ring $\left(k\left[x_{1}, \ldots, x_{n}\right]\right) /\left(f_{1}, \ldots, f_{n}\right)$ and $\mathfrak{m}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. Consider the length $\lambda\left(R / \mathfrak{m}^{n}\right)$. This is becomes polynomial for large values of n of degree d, which is equal to the dimension of the ring R. The degree d coefficient is $\frac{e(R)}{d!}$ where $e(R)$ is the multiplicity at that point. My reseach is focused on studying generalizations of this multiplicity to determine what properties these may characterize.

For a commutative ring R and an ideal I, the integral closure of I is defined to be the ideal

$$
\bar{I}=\left\{r \in R \mid r^{n}+a_{1} r^{n-1}+\ldots+a_{n-1} r+a_{n}=0 \text { for some } n \text { and for } a_{i} \in I^{i}\right\} .
$$

For $I \subseteq J$ ideals in R, I is said to be a reduction of J if $I J^{n}=J^{n+1}$ for some n. Reduction ideals were introduced by Northcott and Rees as a tool to study the integral closure of an ideal. We have the following relation between integral closure and reductions.

Theorem 1. Let R be a commutative noetherian ring and $I \subseteq J$ ideals. The following are equivalent:
(1) $I \subseteq J$ is a reduction;
(2) $\bar{I}=\bar{J}$;
(3) $J \subseteq \bar{I}$.

There are many algebraic objects that are of interest when studying the integral closure of an ideal. The algebra $R[I t]=\bigoplus_{n=0}^{\infty} I^{n} t^{n}$ is called the Rees algebra and $R\left[I t, t^{-1}\right]=\bigoplus_{n \in \mathbb{Z}} I^{n} t^{n}$
where $I^{n}=R$ when $n \leq 0$ is the extended Rees algebra. The associated graded ring is defined by

$$
G_{I}(R)=\bigoplus_{i=0}^{\infty} I^{i} / I^{i+1} \cong R[I t] / I R[I t] \cong R\left[I t, t^{-1}\right] /\left(t^{-1}\right)
$$

If (R, \mathfrak{m}) is a local ring of dimension d and I is \mathfrak{m}-primary, then the lengths $\lambda\left(I^{i} / I^{i+1}\right)$ are finite for all i. The Hilbert function

$$
h(n)=\sum_{i=0}^{n} \lambda\left(I^{i} / I^{i+1}\right)
$$

is eventually a polynomial of degree d with rational coefficients. The leading coefficient of this polynomialis given by $\frac{e(I)}{d!}$, where $e(I)$ is an integer which is called the Samuel multiplicity of I. It is fairly straightforward to prove that if $I \subseteq J$ is a reduction, then $e(I)=e(J)$.

In 1961, Rees proved the following theorem.

Theorem 2. [7, Theorem 11.3.1] Let (R, \mathfrak{m}) be a local ring and $I \subseteq J$ be \mathfrak{m}-primary ideals. If I is a reduction of J, then $e(I)=e(J)$. Moreover, if R is formally equidimensional, then the converse also holds.

The constraint that R be formally equidimensional is a rather weak assumption; it means that all minimal prime ideals of the completion of R have the same dimension.

There have been many attempts to generalize Theorem 2 for ideals that are not \mathfrak{m}-primary, a case in which the classical Samuel multiplicity is no longer defined. The analytic spread of an ideal is defined by

$$
\ell(I)=\operatorname{dim}\left(G_{I}(R) / \mathfrak{m} G_{I}(R)\right) .
$$

It is known that $\ell(I)$ is between $\operatorname{ht}(I)$ and $\operatorname{dim}(R)$. In the case that $\ell(I)=\operatorname{dim}(R), I$ is said to have maximal analytic spread. In 1993, Achilles and Manaresi defined the j-multiplicity for ideals of maximal analytic spread

$$
j(I)=e\left(H_{\mathfrak{m}}^{0}\left(G_{I}(M)\right)\right)
$$

Further, it was shown that

$$
j(I)=\sum_{\mathfrak{p} \in \operatorname{Assh}_{G_{I}(R)}\left(G_{I}(R) / \mathfrak{m} G_{I}(R)\right)} e\left(G_{I}(R) / \mathfrak{p}\right) \lambda\left(\left(G_{I}(R)\right)_{\mathfrak{p}}\right)
$$

One can prove that if I is \mathfrak{m}-primary, then $j(I)=e(I)$.
In 2001, Flenner and Manaresi proved the following theorems.

Theorem 3. [6, Lemma 3.2] Let (R, \mathfrak{m}) be a formally equidimensional local ring and $I \subseteq J$ ideals. If $j\left(I_{\mathfrak{p}}\right)=j\left(J_{\mathfrak{p}}\right)$ for all $\mathfrak{p} \in \operatorname{Spec}(R) \backslash\{\mathfrak{m}\}$, then $j(I) \geq j(J)$.

Theorem 4. [6, Theorem 3.3] Let (R, \mathfrak{m}) be a formally equidimensional local ring and $I \subseteq J$ ideals. Then the following are equivalent:
(1) $I \subseteq J$ is a reduction;
(2) $j\left(I_{\mathfrak{p}}\right)=j\left(J_{\mathfrak{p}}\right)$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
(3) $j\left(I_{\mathfrak{p}}\right)=j\left(J_{\mathfrak{p}}\right)$ for all $\mathfrak{p} \in \bigcup_{n} \operatorname{Ass}\left(R / \overline{I^{n}}\right)$

McAdam [8] proved that the set $\operatorname{Ass}\left(R / \overline{I^{n}}\right)$ is an ascending set of primes which eventually stabilizes and that these primes are exactly the primes in which the analytic spread of $I_{\mathfrak{p}}$ is maximal. Further, he proved that this set of primes is finite. Thus the equality $j\left(I_{\mathfrak{p}}\right)=j\left(J_{\mathfrak{p}}\right)$ only needs to be checked at finitely many prime ideals. A better characterization would be one that involves invariants that can be computed by considering only the ring R and not all of its localizations.

Another generalization of the classical Samuel multiplicity comes from the bigraded ring

$$
G_{\mathfrak{m}}\left(G_{I}(R)\right)=\bigoplus_{i=0}^{\infty} \bigoplus_{j=0}^{\infty} \frac{I^{i} \mathfrak{m}^{j}+I^{i+1}}{I^{i} \mathfrak{m}^{j+1}+I^{i+1}}
$$

The Hilbert function

$$
h(u, v)=\sum_{i=0}^{u} \sum_{j=0}^{v} \lambda\left(\frac{I^{i} \mathfrak{m}^{j}+I^{i+1}}{I^{i} \mathfrak{m}^{j+1}+I^{i+1}}\right)
$$

is polynomial for $u, v \gg 0$ of degree $d=\operatorname{dim} R$. The degree d part of this polynomial is given by

$$
\sum_{k+n=d} \frac{c_{k}(I)}{k!n!} u^{k} v^{n}
$$

where $c_{k}(I)$ are integers. Originally defined by Achilles and Manaresi in [2], the integer $c_{k}(I)$ is called the k-th generalized Hilbert-Samuel multiplicity. They also proved that $c_{0}(I)=j(I)$. Further, the following was proved.

Theorem 5. [2, Theorem 2.3] Let (R, \mathfrak{m}) be a local ring of dimension d and I an ideal of R. Denote $\ell=\ell(I)$ and $q=\operatorname{dim}(R / I)$. Then:
(1) $c_{i}(I)=0$ for $i<d-\ell$ or $i>q$;
(2) $c_{d-\ell}(I)=\sum_{\beta} e\left(\mathfrak{m} G_{I}(R)_{\beta}\right) e\left(G_{I}(R) / \beta\right)$ where β runs through all the highest dimensional associated primes of $G_{I}(R) / \mathfrak{m} G_{I}(R)$ such that $\operatorname{dim}\left(G_{I}(R) / \beta\right)+\operatorname{dim}\left(G_{I}(R)_{\beta}\right)=$ $\operatorname{dim} G_{I}(R) ;$
(3) $c_{q}(I)=\sum_{\mathfrak{p}} e\left(I_{\mathfrak{p}}\right) e(R / \mathfrak{p})$ where \mathfrak{p} runs through all the highest dimensional associated primes of R / I such that $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim} R_{\mathfrak{p}}=\operatorname{dim} R$.

In 2001, Ciupercă proved the following.
Theorem 6. [3, Theorem 2.7] Let (R, \mathfrak{m}) be a local ring, $I \subseteq J$ ideal. If I is a reduction of J, then $c_{i}(I)=c_{i}(J)$ for all $i=0, \ldots, d$.

Several other proofs of this result were given later. See for example [9, Corollary 11.5]. My research has been motivated by finding a suitable converse of this theorem.

To do so, we begin by proving the following result that expresses each generalized multiplicity $c_{k}(I, M)$ which is defined in the more general case of R-modules, as a linear combination of certain local j-multiplicities.

Theorem 7. Let (R, \mathfrak{m}) be a local ring, M a finitely generated R-module of dimension d, $I \subseteq R$ an ideal with $\ell_{M}(I)=\ell$, and denote

$$
\Lambda_{k}=\Lambda_{k}(I, M)=\left\{\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Supp}(M / I M), \operatorname{dim}(R / \mathfrak{p})=k, \operatorname{dim}(R / \mathfrak{p})+\operatorname{dim} M_{\mathfrak{p}}=\operatorname{dim} M\right\}
$$

Further, let $\left\{x_{2}, \ldots, x_{\ell}\right\}$ be a sequence of elements of I such that x_{i} is a superficial element for $\left(I,\left(M /\left(x_{2}, \ldots, x_{i-1}\right) M\right)_{\mathfrak{p}}\right)$ for all $\mathfrak{p} \in \operatorname{Supp}(M / I M)$ such that $\operatorname{dim}\left(\left(M /\left(x_{2}, \ldots, x_{i-1}\right) M\right)_{\mathfrak{p}}\right)=$ $\ell_{\left(M /\left(x_{2}, \ldots, x_{i-1}\right) M\right)_{\mathfrak{p}}}\left(I R_{\mathfrak{p}}\right) \geq 2$.

Assume that the following condition is satisfied:

$$
\text { (*) } \operatorname{dim} M_{\mathfrak{p}}=\operatorname{dim}\left(I^{n} M_{\mathfrak{p}}\right) \text { for all } n \geq 0 \text { and for all } \mathfrak{p} \in \operatorname{Supp}(M / I M)
$$

Then for all $k=d-\ell, \ldots, d$ we have

$$
c_{k}(I, M)=\sum_{\mathfrak{p} \in \Lambda_{k}} c_{0}\left(I R_{\mathfrak{p}},\left(M /\left(x_{2}, \ldots, x_{d-k}\right) M\right)_{\mathfrak{p}}\right) e(R / \mathfrak{p}) .
$$

The technical assumption $(*)$ is very weak and is always satisfied when $\mathrm{ht}_{M}(I)>0$ or whenever $c_{i}(I, M) \neq 0$ for some $i<d$.

Again, note that the sum involved is finite by a result of McAdam [8], which states that the only primes for which $\ell\left(I_{\mathfrak{p}}\right)$ is maximal are in $\bigcup_{n \geq 0} \operatorname{Ass}\left(R / \overline{I^{n}}\right.$ and this is a finite set. Therefore $c_{0}\left(I_{\mathfrak{p}}\right)$ is nonzero for finitely many primes. We start by showing this equality is true for c_{q} where $q=\operatorname{dim} M / I M$. This is a module version of the Achilles and Manaresi result (Theorem 5(3)). Then the condition (*) allows us to replace M with $I^{n} M$ without significantly changing the multiplicity sequence, $c_{k}(I, M)=c_{k}\left(I, I^{n} M\right)$ for $k=0, \ldots, d-1$. Since depth ${ }_{I}\left(I^{n} M\right)>0$ for $n \gg 0$, we can then find a superficial element which is a nonzero divisor so that $c_{k}(I, M)=c_{k}(I, M / x M)$ for $k=0, \ldots, d-2$. From this point we can use induction on the dimension of the module M to finish the proof.

By the result of Flenner and Manaresi (Theorem 3) relating the local j-multiplicities and reduction, I am able to prove a partial converse of Theorem 6:

Theorem 8. Let (R, \mathfrak{m}) be a local ring, M a finitely generated formally equidimensional module, and $I \subseteq J$ ideals with $\bigcup_{n \geq 0} \operatorname{Ass}\left(R / \overline{I^{n}}\right)=\bigcup_{n \geq 0} \operatorname{Ass}\left(R / \overline{J^{n}}\right)$. Assume $c_{k}(I, M)=$ $c_{k}(J, M)$ for all $k \leq d=\operatorname{dim}(M)$. Then I is a reduction of (J, M).

In the future, I would like to investigate the following questions.

Question. Is the assumption $\bigcup_{n \geq 0} \operatorname{Ass}\left(R / \overline{I^{n}}\right)=\bigcup_{n \geq 0} \operatorname{Ass}\left(R / \overline{J^{n}}\right)$ necessary in 8?

The previous question may be considerably difficult. However, in the case that $\operatorname{dim} R=2$, the assumption is not necessary. This leads to the question:

Question. Are there some conditions on the ideals I and J and the ring R where the assumption $\bigcup_{n \geq 0} \operatorname{Ass}\left(R / \overline{I^{n}}\right)=\bigcup_{n \geq 0} \operatorname{Ass}\left(R / \overline{J^{n}}\right)$ is not necessary?

In considering the recent work of Jefferies and Montaño [5] and the relationship between the j-multiplicity and the multiplicity sequence, I have considered the following question.

Question. Can the multiplicity sequence for a monomial ideal be calculated by considering some volume?

Considering that $c_{0}(I)=j(I)=e\left(H_{\mathfrak{m}}^{0}\left(G_{I}(R)\right)\right.$, I have considered the following question.

Question. Can the multiplicities $c_{i}(I, M)$ be calculated easier by considering the multiplicity of some other module, such as a local cohomology module?

References

[1] R. Achilles, M. Manaresi, Multiplicity for ideals of maximal analytic spread and intersection theory, J. Math. Kyoto Univ. (1993), 1029-1046.
[2] R. Achilles, M. Manaresi, Multiplicities of a bigraded ring and intersection theory, Math. Ann. 309 (1997), 573-591.
[3] C. Ciupercă, A numerical characterization of the S_{2}-ification of a Rees algebra, J. Pure Appl. Algebra 178 (2003), 25-48.
[4] T. Dunn, A Linear Formula for the Generalized Multiplicity Sequence, 2015.
[5] J. Jeffries, J. Montaño. The j-multiplicity of monomial ideals, arXiv:1301.3441, 2013.
[6] H. Flenner, M. Manaresi, A numerical characterization of reduction ideals, Math. Z. 238 (2001), 205-214.
[7] C. Huneke, I. Swanson, Integral closure of ideals, rings, and modules,London Mathematical Society Lecture Note Series, 336, Cambridge University Press, Cambridge, 2006.
[8] S. McAdam, Asymptotic Prime Divisors, Lecture Notes in Mathematics, 1023, Springer-Verlag, 1983.
[9] N. Trung, J. Verma, Hilbert functions of multigraded algebras, mixed multiplicities of ideals and their applications, J. Comm. Algebra (2010), 515-565.

