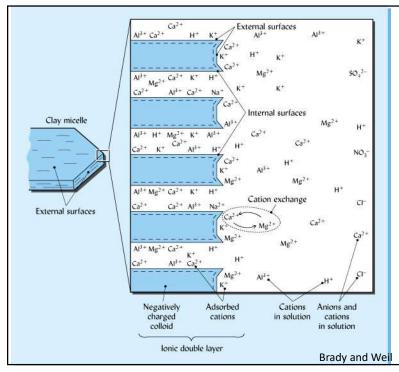
Cation Exchange: What it is, how it is measured, and does it matter?


Tom DeSutter
2021 Soil and Soil/Water Workshop
20 January 2021

One home, 2 CEC's

The capacity of soil to hold nutrients for plant use. Specifically, CEC is the amount of negative charges available on clay and humus to hold positively charged ions.

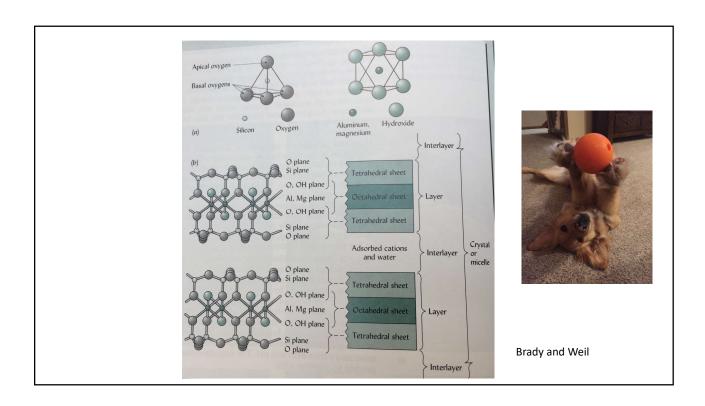
-NRCS

What is Cation Exchange?
Formal definition: "The interchange between a cation in solution and another cation in the boundary layer between the solution and surface of negatively charged material such as clay or organic matter" – Glossary for Soil Science Terms

Nature of cation exchange

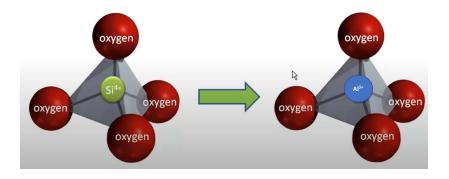
- A simple electrostatic attraction, not a strong "binding" by the soil
- lons constantly exchanging with cations in the soil solution
- lons held by cation exchange readily re-supply the soil solution
- · lons held by cation exchange, not readily leached from soil

Most clay minerals are electrically "charged"


- Most clays have a NEGATIVE charge associated with them
- These negative charges are neutralized by exchangeable cations
 - One of the most important concepts of soil chemistry and soil fertility
 - "This process is important because many plant nutrients, including potassium (K⁺), calcium (Ca²⁺), magnesium (Mg²⁺), ammonium (NH⁴⁺), zinc (Zn²⁺), and iron (Fe³⁺) are cations held to soil by the CEC." R. Fergusen

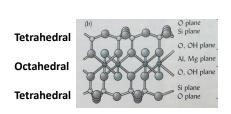
Where do these negative charges come from?

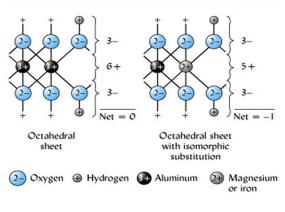
- Isomorphic substitution in aluminosilicate clays
- Broken bonds on the edges of clays, oxide minerals
- Organic matter has negative charges, from ionization of organic groups


Isomorphic substitution

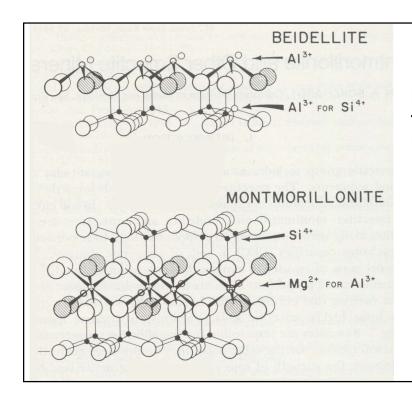
- Iso = same
- Morphic = shape
- There are substitutions in the chemical structure of aluminosilicate clays that do not alter the shape of the clay

Isomorphic substitution

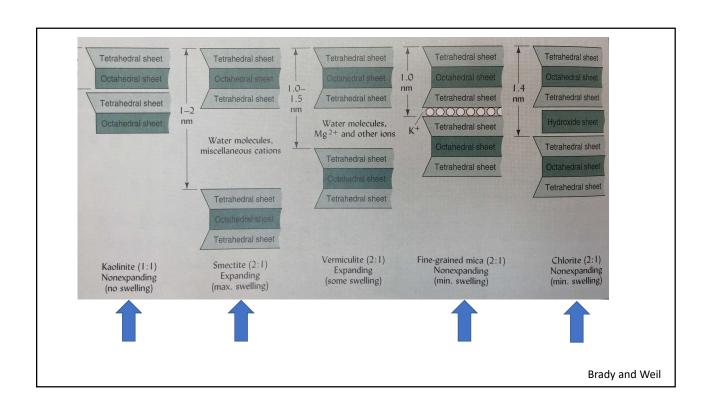

- In the Silicon-tetrahedral layer
 - Al3+ substitution for Si4+
 - · A negative charge is left over



H. Dolliver


Isomorphic substitution

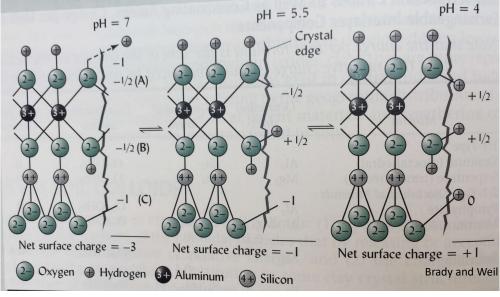
- In the Aluminum-octahedral layer
 - Mg²⁺ or Fe²⁺ for Al³⁺
 - · A negative charge is left over

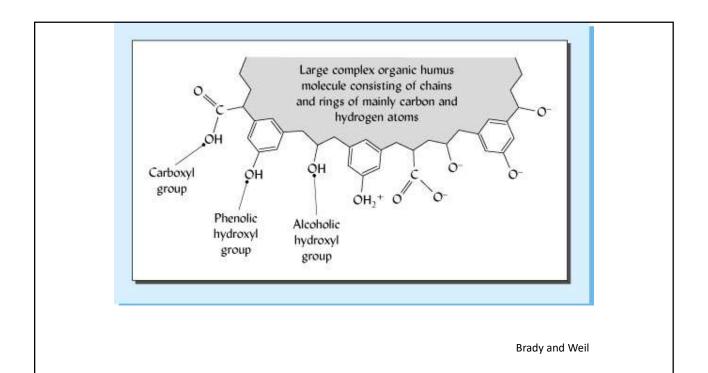


Brady and Weil

Beidellite is a smectitetype mineral found in North Dakota soils

Montmorillonite being the most common smectitetype clay in our area




"Permanent charge"

- Isomorphic substitution results in a fixed, or permanent charge on clays
- Permanent charge is not influenced by soil pH

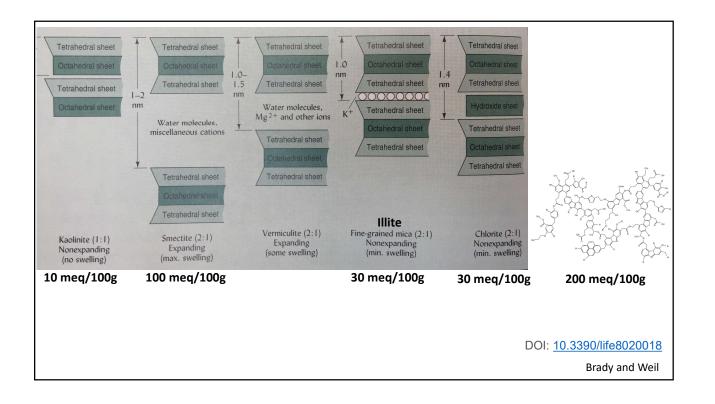
220 Permanent and pH 200 dependent charge 180 (cmol_c/kg of colloid) Humus 160 (organic colloid) 140 Effective cation exchange capacity 120 Smectite (mineral colloid) 100 pH-dependent charge 60 Permanent 20 8.0 4.0 5.0 6.0 Soil pH Brady and Weil

Kaolinite pH dependent charges, broken edges pH = 5.5

How do we define this property?

- How do we define the number of negative charges in a gram of clay or soil?
- Term is <u>cation exchange capacity</u>, a very important soil chemical property
- Modern units of quantification are cmol_c/kg but meq/100g of soil is still used by soil testing laboratories.
 - NOTE: for gypsum requirement app the units are mmol_c/kg

Element	Atomic wt.	Valence	Eq per mole	Eq wt.	Divide ppm (mg/kg) from your soil test report by "X" to get meq/100g or cmol _c /kg
	g/mol	"+" charges/ion	Eq/mol	g/eq	"X"
Na	23	1	1	23	230
K	39	1	1	39	390
Н	1	1	1	1	10
Ca	40	2	2	20	200
Mg	24	2	2	12	120
Al	27	3	3	9	90


NOTE:

-Equivalent wt = atomic wt/valence

So, for Ca^{2+} , 40 g per mol/2Eq Ca^{2+} per mol = 20 g/Eq of Ca^{2+}

 $-1Eq = 100 \text{ cmol}_c = 1 \text{ mol}_c$

Estimating CEC by Texture Soil Textural Triangle Generalized soil texture: CEC relationship Approximate CEC (meq/100g) organic 50-100 clay loam 20-30+ 15-20 silt loam loam 12-15 clay sandy loam 10-12 silty clay loam loamy fine sand less than 10 silt loam B Example 1: For a soil having a clay loam texture what is the range of CEC for this soil? Answer: between 20-30+ meq/100g Remember that: Sandy loam (1/4" ribbon is about 10% clay) Loam (1" ribbon is about 20% clay) Clay loam (2" ribbon is about 35% clay)

Estimating CEC by Knowledge of Clay Component

 Soil Component
 Approximate CEC

 (meq/100g or cmol_c/kg)

 Soil organic matter
 200

 Smectite
 100

 Illite
 30

 Chlorite
 30

 Kaolinite
 10

Example 2. If you determined, using the hydrometer method, that the clay content of a soil was 25% (0.25 kg clay/kg soil) and that this soil also had a soil organic matter (OM) content of 5% (0.05 kg OM/kg soil), what is its estimated CEC? NOTE: assume that clay fraction is dominated by smectite.

For clay:
$$\frac{100 \text{ cmol}_c}{kg \text{ clay}} \times \frac{0.25 \text{ kg clay}}{kg \text{ soil}} = \frac{25 \text{ cmol}_c}{kg \text{ soil}}$$

For OM:
$$\frac{200 \ cmol_c}{kg \ oM} \times \frac{0.05 \ kg \ oM}{kg \ soil} = \frac{10 \ cmol_c}{kg \ soil}$$

Answer: The sum of each of these fractions is the estimated CEC of this soil: 25 + 10 = 35 meg/100g

Detailed clay mineralogy

Activation Laboratories Ltd. A19-11222

Table 1. Mineral abundances in bulk samples (wt %)

Client ID	#101	#102	#103	#104	#105	#106	#107
Actlabs ID	A19- 11222-1	A19- 11222-2	A19- 11222-3	A19- 11222-4	A19- 11222-5	A19- 11222-6	A19- 11222-7
Quartz	26.3	36.0	37.3	52.7	33.6	67	52.6
Plagioclase	5.7	8.8	7.7	15.4	6.0	9.1	15.1
K feldspar	3.1	6.0	5.0	4.7	3.8	5.4	5.5
Muscovite/Illite	4.0	2.4	3.1	4.9	6.4	1.6	1.3
Kaolinite	1.0	1.0	0.5	0.6	1.1	trace	trace
Chlorite	trace	trace	0.5	0.5	2.1	trace	trace
Smectite*	12	12	7	10	21	4	3
Amphibole	n.d.	n.d.	1.2	n.d.	n.d.	n.d.	1.0
Heulandite	0.3	n.d.	n.d.	n.d.	n.d.	0.3	n.d.
Dolomite	n.d.	1.1	0.9	n.d.	5.9	n.d.	n.d.
Calcite	n.d.	n.d.	0.7	n.d.	3.1	n.d.	n.d.
Amorphous	47.6	32.7	36.1	11.2	17.0	12.6	21.5

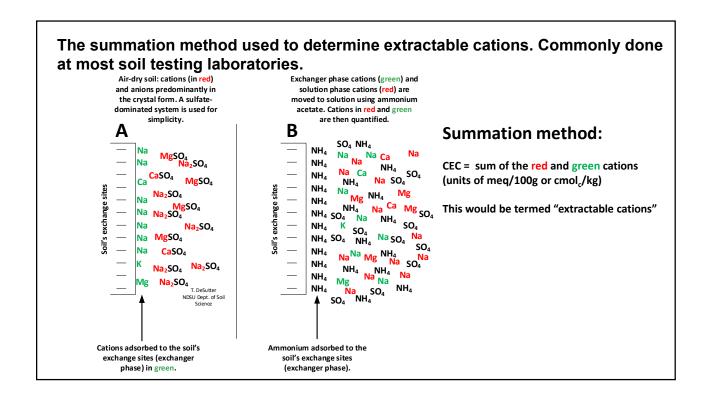
Note: n.d. = not detected; *the amount of smectite is a rough estimate calculated from the relative proportions of smectite and illite in the $\!<\!2~\mu m$ size fraction

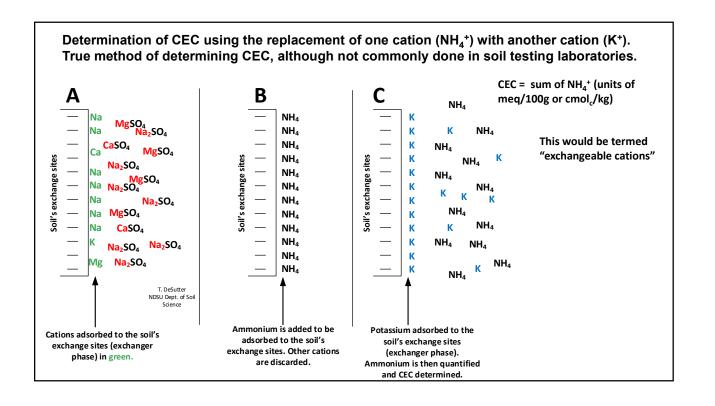
Table 2. Relative proportions of clay minerals in the $\!<\!2~\mu m$ size fraction

Client ID	#101	#102	#103	#104	#105	#106	#107
Actlabs ID	A19- 11222-1	A19- 11222-2	A19- 11222-3	A19- 11222-4	A19- 11222-5	A19- 11222-6	A19- 11222-7
Smectite	70	81	65	62	66	68	69
Illite	24	15	28	30	20	26	26
Kaolinite	4	4	4	4	5	4	3
Chlorite	2	trace	3	4	9	2	2

Example. This soil had a clay content of 11% (= 0.11 kg clay/kg soil). The %OM of this sample was 0.5%.

Clay mineral	Assumed level (meq/100g or cmol _c /kg)	Amount (% of the soil's clay content)
Smectite	100	63 (= 0.63 kg smectite/kg clay)
Illite	30	27
Chlorite	30	5
Kaolinite	10	5
Organic Matter	200	


What is its estimated CEC?


$$smectite: \frac{0.11\ kg\ clay}{kg\ soil} \times \frac{0.63kg\ smectite}{kg\ clay} \times \frac{100\ cmol_c}{kg\ smectite} = 6.9\ \frac{cmol_c}{kg\ soil}$$

$$illite: \frac{0.11\ kg\ clay}{kg\ soil} \times \frac{0.27kg\ illite}{kg\ clay} \times \frac{30\ cmol_c}{kg\ illite} = 0.9\ \frac{cmol_c}{kg\ soil}$$

$$chlorite: \frac{0.11\ kg\ clay}{kg\ soil} \times \frac{0.05kg\ chlorite}{kg\ clay} \times \frac{30\ cmol_c}{kg\ chlorite} = 0.2\ \frac{cmol_c}{kg\ soil}$$

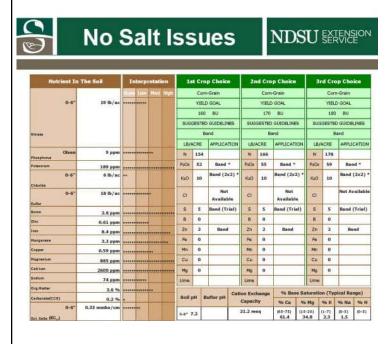
$$kaolinite: \frac{0.11\ kg\ clay}{kg\ soil} \times \frac{0.05kg\ kaolinite}{kg\ clay} \times \frac{10\ cmol_c}{kg\ kaolinite} = 0.06\ \frac{cmol_c}{kg\ soil}$$

$$organic\ matter: \frac{200\ cmol_c}{kg\ om} \times \frac{0.005\ kg\ OM}{kg\ soil} = 1.0\ \frac{cmol_c}{kg\ soil}$$

Answer: The sum of each of these fractions is the estimated CEC of this soil: $6.9+0.9+0.2+0.06+1.0=\underline{9.1}$ meq/100g. This soil is actually from a gravel road from Dunn County (ND; north of Dickinson).

Let's talk about getting CEC

- Summation
 - When soils have soluble salts, exchanger and salt cations are summed
 - This is then termed as 'extractable cations'
- NH₄-K
 - NH₄ is added to the exchange sites and then removed by K, NH₄ then quantified
 - · This is termed as 'exchangeable cations'


Atomic wt.	Valence	Eq per mole	Eq wt.	Divide ppm (mg/kg) from your soil test report by "X" to get meq/100g or cmol _c /kg
g/mol	"+" charges/ion	Eq/mol	g/eq	"X"
23	1	1	23	230
39	1	1	39	390
1	1	1	1	10
40	2	2	20	200
24	2	2	12	120
27	3	3	9	90
	g/mol 23 39 1 40	wt. g/mol "+" charges/ion 23 1 39 1 1 1 40 2 24 2	wt. mole g/mol "+" charges/ion Eq/mol 23 1 1 39 1 1 1 1 40 2 2 24 2 2	wt. mole g/mol "+" charges/ion Eq/mol g/eq 23 1 1 23 39 1 1 39 1 1 1 1 40 2 2 20 24 2 12

NOTE:

-Equivalent wt = atomic wt/valence

So, for Ca^{2+} , 40 g per mol/2Eq Ca^{2+} per mol = 20 g/Eq of Ca^{2+}

 $-1Eq = 100 \text{ cmol}_c = 1 \text{ mol}_c$

So 1,

K: 189/390 = 0.5 meq/100g Mg: 885/120 = 7.4 meq/100g

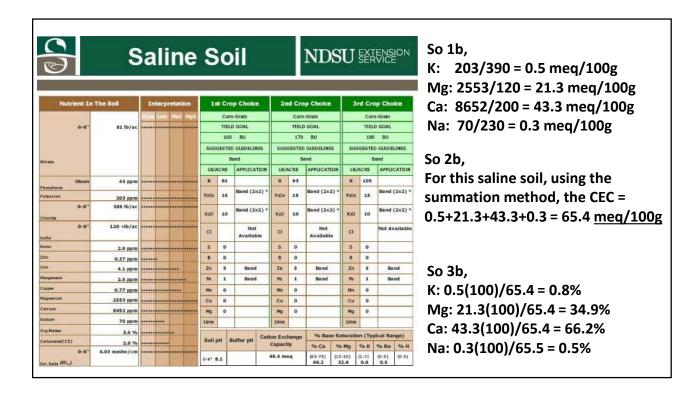
Ca: 2600/200 = 13 meq/100g

Na: 74/230 = 0.3 meq/100g

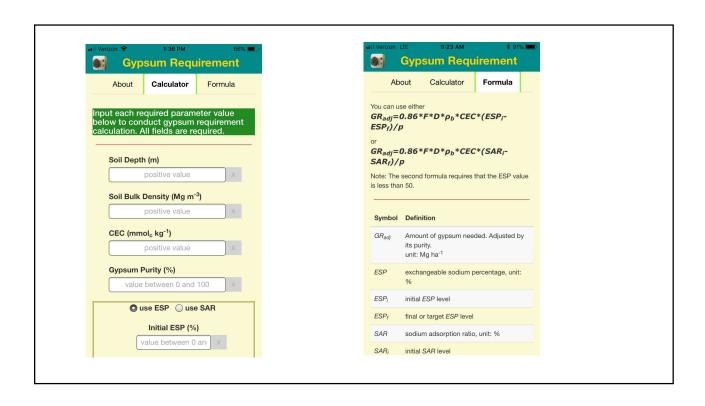
So 2,

For a non-saline soil, using the summation method, the CEC =

0.5 + 7.4 + 13 + 0.3 = 21.2 meq/100g


So 3,

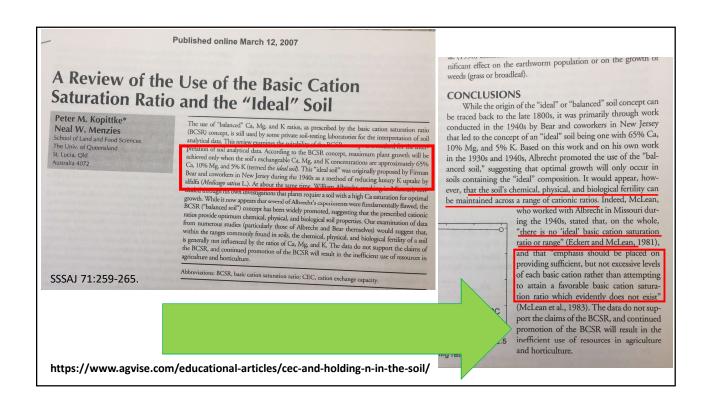
K: 0.5(100)/21.2 = 2.3%


Mg: 7.4(100)/21.2 = 34.9%

Ca: 13(100)/21.2 = 61.3%

Na: 0.3(100)/21.2 = 1.4%

How might CEC be used?

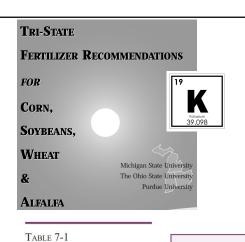

Exchangeable Sodium Percentage, ESP

$$ESP = \frac{Na(100)}{CEC}$$

Base Saturation, %BS

$$\%BS = \frac{Na+K+Ca+Mg(100)}{CEC}$$

NOTE: CEC = Na + K + Ca + Mg + H + Al


"Cation Exchange Capacity – This is a measurement of holding capacity in your soil. As a rough guideline, we will tell you to multiply 10 times your CEC, and that's the maximum we want in your soil at any one time."

CEC x 10 = what?

Infiltration Rate (in/hr)

Percent Sand

The juicedratic equation can never be proven. It's locked inside a safe, inside a vault, inside a volcano.

- -High clay soils and soils with higher organic matter have more binding sites (higher CEC) and can bind more herbicide.
- -Increased binding is likely to result in higher application rates being required to achieve a given level of weed control, as less herbicide is available in the soil water for uptake by germinating weeds. Increased binding also generally results in less leaching.
- -Conversely, in sandy or low organic matter (lower CEC) soils, there is less binding with more herbicide likely to be available in the soil water. https://grdc.com.au/_data/assets/pdf_file/0036/366867/Pre-emergent-Factors-influencing-the-activity.pdf
- -This may lead to increased risk of injury to crops soon after application where there is a lot of freely available herbicide in the soil water, especially for highly soluble herbicides. As a result, many labels recommend a lower application rate in lighter soils.

Influence of cation exchange capacity on soil pH (active acidity), buffer pH (reserve acidity) and lime requirement for three soil textural classes.

Soil Texture	CEC	Soil pH	Buffer pH	Lime Requirement
	meq/100g			tons per acre
Loamy sand	6	5.6	6.8	1
Silt loam	14	5.5	6.6	2
Silty clay loam	24	5.6	6.2	4

https://digital commons.unl.edu/cgi/viewcontent.cgi?article=2705&context=extension hist

https://littlefreelibrary.org/

What Plato got wrong about K fertility: Alternative facts.
-Jonas Z. Breker

Beyond selfie-sticks and tours: A quadpeds guide to the real Wyoming.
-Ibee Zeti

A rose within potatoes is like a sweet child.

-Axel I.S. Icelandic

Cation Exchange: What it is, how it is measured, and does it matter?

Tom DeSutter
2021 Soil and Soil/Water Workshop
20 January 2021