Industrial Hygiene/Preventive Medicine Mold Assessment Guide

TG 278
February 2002
Table of Contents

Introduction .................................................................................................................................................. 2
Safety Tips While Investigating And Evaluating Mold And Moisture Problems ........ 2
Communicate With Building Occupants At All Stages Of Process, As Appropriate.... 3
Routine Investigation And Evaluation Of Moisture And Mold Problems ..................... 3
Assessments Requiring Sampling....................................................................................... 3
References ............................................................................................................................................... 4

APPENDIX A: Mold Investigation Decision Logic ................................................................. 5
APPENDIX B: Mold Remediation Guidelines ........................................................................ 8
APPENDIX C: Personal Protective Equipment ........................................................................ 11
APPENDIX D: Containment Guidance...................................................................................... 13

Use of company or trademarked names does not imply endorsement by the U.S. Army but is intended only to assist in identification of a specific product.
Industrial Hygiene/Preventive Medicine Mold Assessment Guide

Introduction

The USACHPPM Industrial Hygiene Field Services Program receives requests from industrial hygiene (IH)/preventive medicine (PM) field personnel for information about mold investigations and clean-up procedures. Like all organisms, molds have an absolute requirement for water. The types of mold and their abundance in an area depend on the availability of nutrients (i.e., dirt), water and temperature. Chronic water intrusion, lack of adequate ventilation and moisture control, and or isolated floods, such as a water pipe bursting, are typical conditions, which lead to mold growth in buildings.

When mold growth is present, the removal and cleaning of contaminated materials must be handled with proper precautions, because disturbing this growth can result in bioaerosol release, i.e., sending millions of spores into the air.

This mold assessment guide used in conjunction with the ARMY Facilities Management Information Document on Mold Remediation Issues (TG 277) will assist Industrial Hygienists and or Preventive Medicine personnel in conducting mold investigations. Since a team approach is recommended, the collaboration between IH/PM personnel and facility management personnel is vital to correct moldy conditions and prevent future mold growth. Use the following procedures and refer to Appendix A: Mold Investigation Decision Logic, for guidance on mold investigation, evaluation, and remediation for routine assessments.

Air sampling for mold should never be part of a routine assessment. Remediation strategies can generally be made on the basis of a visual inspection or confirmation with a bulk or surface sample. In addition, air sampling methods for some mold are prone to false negative results and therefore cannot be used to definitively rule out contamination.

Safety Tips While Investigating and Evaluating Mold and Moisture Problems

- Be careful not to touch mold or moldy items with bare hands.
- Do not allow mold or mold spores to get into your eyes.
- Do not breathe in mold or mold spores.
- Consult Appendices B, C, and D for Remediation, Personal Protective Equipment (PPE) to be used during remediation and Containment guidance.
- Consider using PPE when disturbing mold during investigation. Depending upon the situation, a half-face NIOSH-approved N-95 respirator, gloves, and goggles are recommended.
Communicate with building occupants at all stages of process, as appropriate\(^1\).

When mold growth requiring Level III or IV (large-scale) remediation is found (See Appendix B), the building owner, management, and/or employer should notify occupants in the affected area(s) of its presence. Notification should include a description of the remedial measures to be taken and a timetable for completion. Well-planned group meetings held before and after remediation with full disclosure of plans and results can be an effective communication mechanism. Individuals seeking medical attention should be provided with a copy of all inspection results and interpretation to give to their medical practitioners.

**Routine Investigation and Evaluation of moisture and mold problems\(^3\).**

- Determine the total surface area of visible mold affected (square feet).
- Consider the possibility of hidden mold.
- Clean up small mold problems and fix moisture problems before they become large problems.
- Select remediation personnel or team based on the assessment.
- Investigate areas associated with occupant complaints.
- Identify source(s) or cause of water or moisture problem(s).
- Note type of water-damaged materials (wallboard, carpet, etc.).
- Check inside air ducts and air handling unit.

**Assessments Requiring Sampling**

Air sampling may be necessary if an individual(s) has been diagnosed with a disease that is or may be associated with mold exposure (e.g., aspergillosis) and the occupational health physician/medical practitioner desires to confirm the causative agent.

Pre- and post-remediation air sampling may be necessary if there is evidence from a visual inspection or bulk sampling that the ventilation systems are contaminated. The purpose of such sampling is to assess the extent of contamination throughout a building and to confirm adequate remediation.

Air sampling may be necessary if the presence of mold is suspected (e.g., musty odors) but cannot be identified by a visual inspection or bulk sampling (e.g., mold growth behind walls). The purpose of this sampling is to determine the location and degree of contamination\(^2\).

When air sampling is deemed necessary and is performed, outdoor air samples should be collected at the same time at the fresh air intake, which serves the suspected area. Values obtained should be compared and the indoor and outdoor air samples should be similar in kinds and concentrations of mold to what is found locally in the outdoor air\(^4\). If they are different, bioamplification is occurring and the problem needs corrected.

Personnel conducting the sampling should be trained in proper air sampling methods for microbial contaminants. For additional information on air sampling, refer to the American Conference of Governmental Industrial Hygienists', "Bioaerosols: Assessment and Control\(^4\)."
Sample analysis should follow analytical methods recommended by the American Industrial Hygiene Association (AIHA) or the American Conference of Governmental Industrial Hygienists (ACGIH). The laboratory conducting the analyses should participate in the AIHA Environmental Microbiology Proficiency Analytical Testing (EMPAT) program. For further mold assistance, contact USACHPPM, Industrial Hygiene Field Services Program, DSN 584-3118 or (410) 436-3118.

References


APPENDIX A

MOLD INVESTIGATION DECISION LOGIC
MOLD INVESTIGATION DECISION LOGIC

Observe Visible Mold?

YES

1. Determine the size of affected surface area of visible mold.

2. Identify source of water or moisture problem.

3. Plan remediation, adapt guidelines to fit situation; Consult Appendices B, C, & D.

4. Investigate all possible pathways for hidden mold.

5. Select PPE.


7. Select Remediation Personnel or Team.

In-house expertise
Outside expertise

8. Fix water or moisture problem.

9. Check for return of moisture and mold problem.

10. Find hidden mold.

Hidden mold found, Reevaluate.

Remediate.

11. Contact an Experienced Professional Microbial Investigator.

NO

Musty, moldy odors present or have occupant complaints of these odors.

10. Find hidden mold.

Do not find hidden mold.

8. Fix water or moisture problem.

7. Select Remediation Personnel or Team.

In-house expertise
Outside expertise


5. Select PPE.

9. Check for return of moisture and mold problem.

4. Investigate all possible pathways for hidden mold.
MOLD INVESTIGATION DECISION LOGIC NOTES:

1. Roughly approximate the total surface area of visible mold. Categorization of the remediation levels are sometimes borderline, so when trying to decide the category to apply, consider the extent of visible growth, such as a heavy blanket of growth on the surface, to barely visible. If heavy growth is apparent, consider moving up to the next level of protection.

2. Do not skip this step. Address the source of water or moisture problem or the mold will simply reappear.

3. Always protect the health and safety of the building occupants and remediators.

4. Mold may be hiding on the backside of drywall, vinyl wallpaper, or paneling, the top of ceiling tiles, the underside of carpets and pads. Check walls behind furniture, pipe chases and utility tunnels, porous thermal or acoustic liners inside ductwork, or check the rafters (due to roof leaks or insufficient insulation).

5. Utilize appendices B and C for remediation guidance. Use your best judgment during investigations, if not disturbing the mold you may need minimal to no PPE. Do not alarm building occupants unnecessarily, but protect yourself as necessary.

6. If the containment is working properly, the polyethylene sheeting will billow inwards on all surfaces. If it flutters or billows outward, containment has not been achieved, and you should find and correct the problem before starting your remediation activities. Confirm negative pressure with smoke tubes.

7. Select remediation personnel who have the experience and training needed to implement the remediation plan.

8. You must completely fix or eliminate the water or moisture problem to solve the problem.

9. You should revisit the site(s) approximately two weeks after remediation, and it should show no signs of water damage or mold growth.

10. If you discover hidden mold, revise your plan by reassessing the size of moldy area.

11. If you believe that you have a hidden mold problem, you may want to consider hiring an experienced mold investigative professional.
APPENDIX B

[Adapted from EPA 402-K-01-001, March 2001]

Mold Remediation Guidelines

Appendix B presents remediation guidelines for building materials that have or are likely to have mold growth. The guidelines in Appendix B are designed to protect the health of occupants and cleanup personnel during remediation. These guidelines are based on the area and type of material affected by water damage and/or mold growth. Please note that these are guidelines; some professionals may prefer other cleaning methods.

If you are considering cleaning your ducts as part of your remediation plan, you should consult EPA's publication entitled, Should You Have the Air Ducts In Your Home Cleaned? (5) Although this EPA document has a residential focus, the same concept applies to other building types. If possible, remediation activities should be scheduled during off-hours when building occupants are less likely to be affected.

Although the level of personal protection suggested in these guidelines is based on the total surface area contaminated and the potential for remediator and/or occupant exposure, professional judgment should always play a part in remediation decisions. These remediation guidelines are based on the size of the affected area to make it easier for remediators to select appropriate techniques, not on the basis of health effects or research showing there is a specific method appropriate at a certain number of square feet. The guidelines have been designed to help construct a remediation plan. The remediation manager will then use professional judgment and experience to adapt the guidelines to particular situations. When in doubt, caution is advised. Consult an experienced mold remediator for more information.
## Guidelines for Remediating Building Materials with Mold Growth Caused by Clean Water

### Cleanup Methods†

<table>
<thead>
<tr>
<th>Material or Furnishing Affected</th>
<th>Cleanup Methods†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Books and papers</td>
<td>3</td>
</tr>
<tr>
<td>Carpet and backing</td>
<td>1, 3</td>
</tr>
<tr>
<td>Concrete or cinder block</td>
<td>1, 3</td>
</tr>
<tr>
<td>Hard surface, porous flooring (linoleum, ceramic tile, vinyl)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Non-porous, hard surfaces (plastics, metals)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Upholstered furniture &amp; drapes</td>
<td>1, 3</td>
</tr>
<tr>
<td>Wallboard (drywall and gypsum board)</td>
<td>3</td>
</tr>
<tr>
<td>Wood surfaces</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

### Personal Protective Equipment

- **Minimum**
  - N-95 respirator, gloves, and goggles

- **None required**

### Containment

- **None required**

### SMALL - Total Surface Area Affected Less Than 10 square feet (ft²)

### MEDIUM - Total Surface Area Affected Between 10 and 100 ft²

### LARGE - Total Surface Area Affected Greater Than 100 ft² or Potential for Increased Occupant or Remediator Exposure During Remediation Estimated to be Significant
Use professional judgment to determine prudent levels of Personal Protective Equipment and containment for each situation, particularly as the remediation site size increases and the potential for exposure and health effects rises. Assess the need for increased Personal Protective Equipment, if, during the remediation, more extensive contamination is encountered than was expected. These guidelines are for damage caused by clean water. If you know or suspect that the water source is contaminated with sewage, or chemical or biological pollutants, then the Occupational Safety and Health Administration (OSHA) requires PPE and containment. An experienced professional should be consulted if you and/or your remediators do not have expertise in remediating contaminated water situations.

Select method most appropriate to situation. Since molds gradually destroy the things they grow on, if mold growth is not addressed promptly, some items may be damaged such that cleaning will not restore their original appearance. If mold growth is heavy and items are valuable or important, you may wish to consult a restoration/water damage/remediation expert. Please note that these are guidelines; other cleaning methods may be preferred by some professionals.

**Cleanup Methods**

- **Method 1:** Wet vacuum (in the case of porous materials, some mold spores/fragments will remain in the material but will not grow if the material is completely dried). Steam cleaning may be an alternative for carpets and some upholstered furniture.
- **Method 2:** Damp-wipe surfaces with plain water or with water and detergent solution (except wood — use wood floor cleaner); scrub as needed.
- **Method 3:** High-efficiency particulate air (HEPA) vacuum after the material has been thoroughly dried. Dispose of the contents of the HEPA vacuum in well-sealed plastic bags.
- **Method 4:** Discard - Remove water-damaged materials and seal in plastic bags while inside of containment, if present. Dispose of as normal waste. HEPA vacuum area after it is dried.

**Personal Protective Equipment (PPE)**

- Minimum: Gloves, N-95 respirator, goggles/eye protection
- Limited: Gloves, N-95 respirator or half-face respirator with HEPA filter, disposable overalls, goggles/eye protection
- Full: Gloves, disposable full body clothing, head gear, foot coverings, full-face respirator with HEPA filter

**Containment**

- Limited: Use polyethylene-sheeting ceiling to floor around affected area with a slit entry and covering flap; maintain area under negative pressure with HEPA filtered fan unit. Block supply and return air vents within containment area.
- Full: Use two layers of fire-retardant polyethylene sheeting with one airlock chamber. Maintain area under negative pressure with HEPA filtered fan exhausted outside of building. Block supply and return air vents within containment area.

Table developed from literature and remediation documents including Bioaerosols: Assessment and Control (American Conference of Governmental Industrial Hygienists, 1999) (4) and IICRC S500, Standard and Reference Guide for Professional Water Damage Restoration, (Institute of Inspection, Cleaning and Restoration, 1999) (6)
APPENDIX C


PERSONAL PROTECTIVE EQUIPMENT

Skin and Eye Protection

Gloves are required to protect the skin from contact with mold allergens (and in some cases mold toxins) and from potentially irritating cleaning solutions. Long gloves that extend to the middle of the forearm are recommended. The glove material should be selected based on the type of materials being handled. If you are using a strong cleaning solution, you should select gloves made from natural rubber, neoprene, nitrile, polyurethane, or polyvinyl chloride (PVC). If you are using a mild detergent or plain water, ordinary household rubber gloves may be used. To protect your eyes, use properly fitted goggles or a full-face respirator with HEPA filter. Goggles must be designed to prevent the entry of dust and small particles. Safety glasses or goggles with open vent holes are not acceptable.

Respiratory Protection

Respirators protect cleanup workers from inhaling airborne mold, mold spores, and dust. Respiratory protection used in accordance with the OSHA respiratory protection standard (29 CFR 1910.134), is recommended(7). All individuals must be trained, have medical clearance, and must be fit-tested by a trained professional before wearing a respirator.

- Minimum: When cleaning up a small area affected by mold, you should use an N-95 respirator. This device covers the nose and mouth, will filter out 95% of the particulates that pass through the filter. In situations where a full-face respirator is in use, additional eye protection is not required.
- Limited: Limited PPE includes use of a half-face or full-face air-purifying respirator (APR) equipped with a HEPA filter cartridge. These respirators filter mold particles in the air. Note that half-face APRs do not provide eye protection. In addition, the HEPA filters do not remove vapors or gases. You should always use respirators approved by the National Institute for Occupational Safety and Health.
- Full: In situations in which high levels of airborne dust or mold spores are likely or when intense or long-term exposures are expected (e.g., the cleanup of large areas of contamination), a full-face, powered air-purifying respirator (PAPR) is recommended. Full-face PAPRs use a blower to force air through a HEPA filter. The HEPA-filtered air is supplied to a mask that covers the entire face or a hood that covers the entire head. The positive pressure within the mask or hood prevents unfiltered air from entering through penetrations or gaps. Individuals must be trained to use their respirators before they begin remediation.
Disposable Protective Clothing

Disposable clothing is recommended during a medium or large remediation project to prevent the transfer and spread of mold to clothing and to eliminate skin contact with mold.

- **Limited:** Disposable paper overalls can be used.
- **Full:** Mold-impervious disposable head and foot coverings, and a body suit made of a breathable material, such as TYVEK®, should be used. All gaps, such as those around ankles and wrists, should be sealed (many remediators use duct tape to seal clothing).

®TYVEK, DuPont de Nemours, E.I., & Co., Wilmington, DE.
APPENDIX D


CONTAINMENT GUIDANCE

Containment

The purpose of containment during remediation activities is to limit release of mold into the air and surroundings, in order to minimize the exposure of remediators and building occupants to mold. Mold and moldy debris should not be allowed to spread to areas in the building beyond the contaminated site.

The two types of containment recommended in Appendix B are limited and full. The larger the area of moldy material, the greater the possibility of human exposure and the greater the need for containment. In general, the size of the area helps determine the level of containment. However, a heavy growth of mold in a relatively small area could release more spores than a lighter growth of mold in a relatively large area. Choice of containment should be based on professional judgment. The primary object of containment should be to prevent occupant and remediator exposure to mold.

Limited Containment

Limited containment is generally recommended for areas involving between 10 and 100 square feet ($\text{ft}^2$) of mold contamination. The enclosure around the moldy area should consist of a single layer of 6-mil, fire-retardant polyethylene sheeting. The containment should have a slit entry and covering flap on the outside of the containment area. For small areas, the polyethylene sheeting can be affixed to floors and ceilings with duct tape. For larger areas, a steel or wooden stud frame can be erected and polyethylene sheeting attached to it. All supply and air vents, doors, chases, and risers within the containment area must be sealed with polyethylene sheeting to

### Containment Tips

- Always maintain the containment area under negative pressure.
- Exhaust fans to outdoors and ensure that adequate makeup air is provided.
- If the containment is working, the polyethylene sheeting should billow inwards on all surfaces. If it flutters or billows outward, containment has been lost, and you should find and correct the problem before continuing your remediation activities.
minimize the migration of contaminants to other parts of the building. Heavy mold growth on ceiling tiles may impact HVAC systems if the space above the ceiling is used as a return air plenum. In this case, containment should be installed from the floor to the ceiling deck, and the filters in the air-handling units serving the affected area may have to be replaced once remediation is finished.

The containment area must be maintained under negative pressure relative to surrounding areas. This will ensure that contaminated air does not flow into adjacent areas. This can be done with a HEPA-filtered fan unit exhausted outside of the building. For small, easily contained areas, an exhaust fan ducted to the outdoors can also be used. The surfaces of all objects removed from the containment area should be remediated/cleaned prior to removal. The remediation guidelines outlined in Appendix B can be implemented when the containment is completely sealed and is under negative pressure relative to the surrounding area.

**Full Containment**

Full containment is recommended for the cleanup of mold-contaminated surface areas greater than 100 ft$^2$ or in any situation in which it appears likely that the occupant space would be further contaminated without full containment. Double layers of polyethylene should be used to create a barrier between the moldy area and other parts of the building. A decontamination room or airlock should be constructed for entry into and exit from the remediation area. The entryways to the airlock from the outside and from the airlock to the main containment area should consist of a slit entry with covering flaps on the outside surface of each slit entry. The chamber should be large enough to hold a waste container and allow a person to put on and remove PPE. All contaminated PPE, except respirators, should be placed in a sealed bag while in this chamber. Respirators should be worn until remediators are outside the decontamination chamber. PPE must be worn throughout the final stages of HEPA vacuuming and damp-wiping of the contained area. PPE must also be worn during HEPA vacuum filter changes or cleanup of the HEPA vacuum.
Local Reproduction is Authorized and Encouraged.